1 |
Fu T J, Li Z H. Review of recent development in Co-based catalysts supported on carbon materials for Fischer-Tropsch synthesis[J]. Chemical Engineering Science, 2015, 135: 3-20.
|
2 |
Zhang Y S, Yao Y L, Chang J L, et al. Fischer-Tropsch synthesis with ethene co-feeding: experimental evidence of the CO-insertion mechanism at low temperature[J]. AIChE Journal, 2020, 66(11): e17029.
|
3 |
Santos R G D, Alencar A C. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18114-18132.
|
4 |
Zhou W, E C, Li Z X, et al. Separation characteristics in a novel gas-liquid vortex separator[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 18115-18125.
|
5 |
Hoffmann A C, Stein L E, Bradshaw P. Gas cyclones and swirl tubes: principles, design, and operation[J]. Applied Mechanics Reviews, 2003, 56: 17-28.
|
6 |
雷英庶, 陈启东, 张斌. 叶片组结构对气液旋风分离器性能的影响[J]. 机械设计, 2020, 37(7): 68-73.
|
|
Lei Y S, Chen Q D, Zhang B. Effect of the blade group structure on the gas-liquid cyclone separator's performance[J]. Journal of Machine Design, 2020, 37(7): 68-73.
|
7 |
Xiong Z Q, Lu M C, Li Y Z, et al. Effects of the slots on the performance of swirl-vane separator[J]. Nuclear Engineering and Design, 2013, 265: 13-18.
|
8 |
Ali H, Plaza F, Mann A. Numerical prediction of dust capture efficiency of a centrifugal wet scrubber[J]. AIChE Journal, 2018, 64(3): 1001-1012.
|
9 |
Fu P B, Jiang X, Ma L, et al. Enhancement of PM2.5 cyclone separation by droplet capture and particle sorting[J]. Environmental Science & Technology, 2018, 52(20): 11652-11659.
|
10 |
杨维旺, 王燕云, 于洪传. 叶片结构对轴流导叶式旋风分离器性能的影响分析[J]. 流体机械, 2020, 48(12): 14-21.
|
|
Yang W W, Wang Y Y, Yu H C. Analysis of effect of the blade structure on performance of an axial guide vane cyclone separator[J]. Fluid Machinery, 2020, 48(12): 14-21.
|
11 |
Tang Y F, Qiao Z L, Cao Y, et al. Numerical analysis of separation performance of an axial-flow cyclone for supercritical CO2-water separation in CO2 plume geothermal systems[J]. Separation and Purification Technology, 2020, 248: 116999.
|
12 |
罗小明, 高奇峰, 刘萌, 等. 轴流式气-液旋流分离器分离特性[J]. 石油学报(石油加工), 2020, 36(3): 592-599.
|
|
Luo X M, Gao Q F, Liu M, et al. Separation characteristics of axial-flow gas-liquid cyclone separator[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 592-599.
|
13 |
Huang L, Deng S S, Chen Z, et al. Numerical analysis of a novel gas-liquid pre-separation cyclone[J]. Separation and Purification Technology, 2018, 194: 470-479.
|
14 |
Liu L, Bai B F. Scaling laws for gas-liquid flow in swirl vane separators[J]. Nuclear Engineering and Design, 2016, 298: 229-239.
|
15 |
Shan Y, Coyle T W, Mostaghimi J. Numerical simulation of droplet breakup and collision in the solution precursor plasma spraying[J]. Journal of Thermal Spray Technology, 2007, 16(5/6): 698-704.
|
16 |
Wang L Z, Feng J M, Gao X, et al. Investigation on the oil-gas separation efficiency considering oil droplets breakup and collision in a swirling flow[J]. Chemical Engineering Research and Design, 2017, 117: 394-400.
|
17 |
Austrheim T, Gjertsen L H, Hoffmann A C. An experimental investigation of scrubber internals at conditions of low pressure[J]. Chemical Engineering Journal, 2008, 138(1/2/3): 95-102.
|
18 |
王娟, 高助威, 张雪淼, 等. 旋流雾化喷嘴内气液两相流动的特性研究[J]. 石油炼制与化工, 2020, 51(3): 54-61.
|
|
Wang J, Gao Z W, Zhang X M, et al. Study on characteristics of gas-liquid two-phase flow in swirl atomizing nozzle[J]. Petroleum Processing and Petrochemicals, 2020, 51(3): 54-61.
|
19 |
Ma L, Wang B J, Wang Y M. Optimization and industrial application of recycled hydrogen desulfurization process in a hydrogenation unit[J]. Petroleum Science and Technology, 2016, 34(21): 1749-1754.
|
20 |
Ma L, Shen Q S, Li J P, et al. Efficient gas-liquid cyclone device for recycled hydrogen in a hydrogenation unit[J]. Chemical Engineering & Technology, 2014, 37(6): 1072-1078.
|
21 |
Zhang Y H, Liu A L, Ma L, et al. Acid mist cyclone separation experiment on the hydrochloric acid regeneration system of a cold rolling steel plant[J]. Aerosol and Air Quality Research, 2016, 16(9): 2287-2293.
|
22 |
Song J F, Hu X F. A mathematical model to calculate the separation efficiency of streamlined plate gas-liquid separator[J]. Separation and Purification Technology, 2017, 178: 242-252.
|
23 |
李东芳, 谢绪扬, 高光才, 等. 天然气聚结过滤器气液分离性能的实验研究[J]. 化工机械, 2015, 42(3): 317-323.
|
|
Li D F, Xie X Y, Gao G C, et al. Experimental study on gas/liquid separation performance of natural gas coalescent filter[J]. Chemical Engineering & Machinery, 2015, 42(3): 317-323.
|
24 |
Zhou W, E C, Fan Y P, et al. Experimental research on the separation characteristics of a gas-liquid cyclone separator in WGS[J]. Powder Technology, 2020, 372: 438-447.
|
25 |
王振波, 马艺, 金有海. 导叶式旋流器内油滴的聚结破碎及影响因素[J]. 化工学报, 2011, 62(2): 399-406.
|
|
Wang Z B, Ma Y, Jin Y H. Droplet coalescence and breakup and its influence factors in vane-guided hydrocyclone[J]. CIESC Journal, 2011, 62(2): 399-406.
|
26 |
Yue T, Chen J Y, Song J F, et al. Experimental and numerical study of upper swirling liquid film (USLF) among gas-liquid cylindrical cyclones (GLCC)[J]. Chemical Engineering Journal, 2019, 358: 806-820.
|
27 |
周闻, 王康松, 鄂承林, 等. 多旋臂气液旋流分离器压降特性试验[J]. 化工学报, 2019, 70(7): 2564-2573, 2821.
|
|
Zhou W, Wang K S, E C L, et al. Multi-spiral gas-liquid vortex separator pressure drop characteristics test[J]. CIESC Journal, 2019, 70(7): 2564-2573, 2821.
|