化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4718-4729.DOI: 10.11949/0438-1157.20210123
杨丽1(),孙赟冬1,焦勇1,杨烨2,陈建标1,廖传华2()
收稿日期:
2021-01-19
修回日期:
2021-03-16
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
廖传华
作者简介:
杨丽(1975—),女,博士,副教授,基金资助:
Li YANG1(),Yundong SUN1,Yong JIAO1,Ye YANG2,Jianbiao CHEN1,Chuanhua LIAO2()
Received:
2021-01-19
Revised:
2021-03-16
Online:
2021-09-05
Published:
2021-09-05
Contact:
Chuanhua LIAO
摘要:
印染污泥中含有大量的金属基组分。选取其中的主要金属氧化物组分,分别进行单组分与多组分添加开展催化热解实验,采用X射线衍射、傅里叶变换红外光谱、热解-气质联用、热质联用分析手段,研究金属基组分对印染污泥的催化热解效应,探索了各金属基组分在热解过程中的协同催化作用机理。结果表明,不同金属基化合物在热解过程中显示了不同的催化热解温度区间和催化性能,对热解的催化协同效应是Fe2O3、ZnO、CaO和Na2CO3四种组分共同作用的效果。协同作用可以分为两个阶段:250~500℃为主热解区,各金属基组分都发挥着催化剂的作用,促进大分子化合物的裂解;在600℃之后的高温热解区间,Fe2O3等组分可与原料中的碳成分发生还原反应,造成热重曲线明显失重峰,进一步提升残渣的裂解特性。
中图分类号:
杨丽, 孙赟冬, 焦勇, 杨烨, 陈建标, 廖传华. 灰分在印染污泥热解气化中的协同催化机理[J]. 化工学报, 2021, 72(9): 4718-4729.
Li YANG, Yundong SUN, Yong JIAO, Ye YANG, Jianbiao CHEN, Chuanhua LIAO. Synergistic catalytic mechanism of ash in pyrolysis and gasification of textile dyeing sludge[J]. CIESC Journal, 2021, 72(9): 4718-4729.
Na2O | MgO | Al2O3 | K2O | CaO | MnO | Fe2O3 | ZnO |
---|---|---|---|---|---|---|---|
1.46 | 0.24 | 0.41 | 0.07 | 1.01 | 0.22 | 33.87 | 3.25 |
表3 印染污泥灰分中主要金属基成分/%(质量)
Table 3 The main composition of textile dyeing sludge ash/(% mass)
Na2O | MgO | Al2O3 | K2O | CaO | MnO | Fe2O3 | ZnO |
---|---|---|---|---|---|---|---|
1.46 | 0.24 | 0.41 | 0.07 | 1.01 | 0.22 | 33.87 | 3.25 |
样品 | 工业分析/%(质量) | 元素分析/%(质量) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Vad | Aad | FCad | Cad | Had | Nad | Sad | Oad | ||
印染污泥 | 1.59 | 55.45 | 42.2 | 0.76 | 15.82 | 2.79 | 1.6 | 5.09 | 30.91 | |
锯末 | 5.21 | 68.84 | 3.19 | 22.76 | 48.66 | 5.81 | 0.3 | 0.20 | 36.63 |
表1 实验原料的工业分析和元素分析
Table 1 Proximate analysis and ultimate analysis of raw materials
样品 | 工业分析/%(质量) | 元素分析/%(质量) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Vad | Aad | FCad | Cad | Had | Nad | Sad | Oad | ||
印染污泥 | 1.59 | 55.45 | 42.2 | 0.76 | 15.82 | 2.79 | 1.6 | 5.09 | 30.91 | |
锯末 | 5.21 | 68.84 | 3.19 | 22.76 | 48.66 | 5.81 | 0.3 | 0.20 | 36.63 |
Pb | Cr | Cd | Cu | Zn | Ni |
---|---|---|---|---|---|
40.20 | 310.06 | 1.36 | 113.79 | 8773.8 | 74.56 |
表2 印染污泥重金属含量/(μg/g)
Table 2 Heavy metal content of textile dyeing sludge/(μg/g)
Pb | Cr | Cd | Cu | Zn | Ni |
---|---|---|---|---|---|
40.20 | 310.06 | 1.36 | 113.79 | 8773.8 | 74.56 |
参数 | 印染污泥 | 模拟灰分 | Fe2O3 | ZnO | CaO | Na2CO3 |
---|---|---|---|---|---|---|
Tmax/℃ | 801 | 793 | 861 | 912 | 707 | 902 |
DTGmax/(%/min) | -2.37 | -2.32 | -0.91 | -3.94 | -1.40 | -2.87 |
ΔML | 12.23 | 12.80 | 9.69 | 23.25 | 6.57 | 16.67 |
表4 不同添加物下的主要热解特性参数
Table 4 Main pyrolysis characteristic parameters under different additives
参数 | 印染污泥 | 模拟灰分 | Fe2O3 | ZnO | CaO | Na2CO3 |
---|---|---|---|---|---|---|
Tmax/℃ | 801 | 793 | 861 | 912 | 707 | 902 |
DTGmax/(%/min) | -2.37 | -2.32 | -0.91 | -3.94 | -1.40 | -2.87 |
ΔML | 12.23 | 12.80 | 9.69 | 23.25 | 6.57 | 16.67 |
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
苯系化合物 | 链状化合物 | ||||
甲苯 | 4.42 | 2.73 | 醋酸 | 2.39 | 22.35 |
苯并环丁烯 | 7.49 | 1.33 | 2-甲基丙醇 | 4.65 | 3.82 |
邻甲氧基苯酚 | 13.53 | 5.26 | 正戊醛 | 13.71 | 1.83 |
2-甲氧基-4-甲基苯酚 | 16.58 | 2.44 | 壬醛 | 13.93 | 3.97 |
4-乙烯基-2-甲氧基苯酚 | 19.95 | 10.17 | 2-乙基己酸 | 14.66 | 10.35 |
3-甲氧基-4-羟基苯甲醛 | 22.43 | 7.36 | 酯类* | 16.91 | 0.53 |
(E)-2-甲氧基-4-(1-丙烯基苯酚) | 23.47 | 13.09 | 壬酸 | 18.82 | 2.15 |
苯系 | 24.17 | 3.65 | 1-十三烯 | 19.27 | 0.79 |
苯炔 | 24.35 | 0.83 | 2-甲氧基-4-烯丙基酚 | 21.11 | 3.27 |
苯酯 | 32.80 | 2.88 | 酯类* | 21.51 | 0.71 |
脂环化合物 | 三乙二醇单丁醚 | 23.95 | 2.83 | ||
右旋萜二烯 | 11.61 | 14.94 | 十七烯 | 24.42 | 0.70 |
脂环烯烃 | 31.70 | 4.74 | 十五烷 | 24.61 | 1.24 |
含氧杂环 | 正十二酸 | 26.21 | 8.68 | ||
糠醛 | 6.13 | 1.98 | 烯烃* | 26.79 | 1.39 |
糠醇 | 8.63 | 1.23 | 2,2,4-三甲基-1,3-戊二醇二异丁酸酯 | 26.98 | 1.92 |
呋喃酮 | 10.47 | 12.21 | 己二酸二异丁酯 | 28.92 | 0.95 |
某含氧环烃* | 14.25 | 4.71 | 十四酸 | 30.57 | 0.76 |
含氮杂环 | 十六酸 | 34.60 | 12.02 | ||
某含氮胺类* | 5.10 | 3.83 | 酮类* | 35.54 | 0.35 |
某含氮环烃* | 9.71 | 0.91 | 马来酸二乙基己酯 | 37.37 | 7.06 |
3-甲胺基丙腈 | 13.77 | 0.87 | 十八烷酸 | 37.49 | 7.25 |
N-丁基乙酰胺 | 15.92 | 1.43 | |||
十四胺 | 15.96 | 1.02 |
表5 单一锯末的热解产物
Table 5 Pyrolysis products of pure sawdust
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
苯系化合物 | 链状化合物 | ||||
甲苯 | 4.42 | 2.73 | 醋酸 | 2.39 | 22.35 |
苯并环丁烯 | 7.49 | 1.33 | 2-甲基丙醇 | 4.65 | 3.82 |
邻甲氧基苯酚 | 13.53 | 5.26 | 正戊醛 | 13.71 | 1.83 |
2-甲氧基-4-甲基苯酚 | 16.58 | 2.44 | 壬醛 | 13.93 | 3.97 |
4-乙烯基-2-甲氧基苯酚 | 19.95 | 10.17 | 2-乙基己酸 | 14.66 | 10.35 |
3-甲氧基-4-羟基苯甲醛 | 22.43 | 7.36 | 酯类* | 16.91 | 0.53 |
(E)-2-甲氧基-4-(1-丙烯基苯酚) | 23.47 | 13.09 | 壬酸 | 18.82 | 2.15 |
苯系 | 24.17 | 3.65 | 1-十三烯 | 19.27 | 0.79 |
苯炔 | 24.35 | 0.83 | 2-甲氧基-4-烯丙基酚 | 21.11 | 3.27 |
苯酯 | 32.80 | 2.88 | 酯类* | 21.51 | 0.71 |
脂环化合物 | 三乙二醇单丁醚 | 23.95 | 2.83 | ||
右旋萜二烯 | 11.61 | 14.94 | 十七烯 | 24.42 | 0.70 |
脂环烯烃 | 31.70 | 4.74 | 十五烷 | 24.61 | 1.24 |
含氧杂环 | 正十二酸 | 26.21 | 8.68 | ||
糠醛 | 6.13 | 1.98 | 烯烃* | 26.79 | 1.39 |
糠醇 | 8.63 | 1.23 | 2,2,4-三甲基-1,3-戊二醇二异丁酸酯 | 26.98 | 1.92 |
呋喃酮 | 10.47 | 12.21 | 己二酸二异丁酯 | 28.92 | 0.95 |
某含氧环烃* | 14.25 | 4.71 | 十四酸 | 30.57 | 0.76 |
含氮杂环 | 十六酸 | 34.60 | 12.02 | ||
某含氮胺类* | 5.10 | 3.83 | 酮类* | 35.54 | 0.35 |
某含氮环烃* | 9.71 | 0.91 | 马来酸二乙基己酯 | 37.37 | 7.06 |
3-甲胺基丙腈 | 13.77 | 0.87 | 十八烷酸 | 37.49 | 7.25 |
N-丁基乙酰胺 | 15.92 | 1.43 | |||
十四胺 | 15.96 | 1.02 |
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
苯系化合物 | L-(-)-甘油醛 | 2.31 | 2.68 | ||
甲苯 | 4.58 | 10.07 | 3-甲基-2-丁酮 | 2.46 | 85.38 |
邻二甲苯 | 6.98 | 7.87 | 醋酸 | 2.73 | 201.17 |
苯酚 | 10.45 | 10.37 | 2-丁烯醛 | 2.94 | 29.49 |
4-甲基苯酚 | 13.24 | 5.9 | 羟基丙酮 | 3.07 | 192.02 |
邻甲氧基苯酚 | 13.53 | 117.91 | 2,4-戊二酮 | 3.42 | 11.22 |
2,4-二甲基苯酚 | 15.35 | 1.54 | 乙醚 | 3.73 | 6.38 |
2,5-二羟基苯甲醛 | 15.80 | 0.12 | 2-甲基丙烯酸酐 | 3.77 | 4.17 |
2-甲氧基-4-甲基苯酚 | 16.58 | 98.74 | 1,3-丁二烯 | 4.24 | 2.78 |
3,4-二甲氧基甲苯 | 17.89 | 2.83 | (E)-2-甲基-2-丁烯醛 | 4.33 | 3.34 |
4-乙烯基-2-甲氧基苯酚 | 19.96 | 141.59 | 2-丁炔酸 | 4.41 | 5.92 |
2-甲氧基-4-丙基苯酚 | 21.37 | 4.99 | 1-羟基-2-丁酮 | 4.63 | 6.13 |
3-甲氧基-4-羟基苯甲醛 | 22.33 | 2.55 | 乙酸甲酯 | 4.68 | 101.92 |
4-丙烯基-2-甲氧基苯酚 | 22.43 | 18.95 | 3,3-二甲基丙烯醛 | 4.76 | 21.14 |
(E)-2-甲氧基-4-(1-丙烯基苯酚) | 23.47 | 58.79 | 丁二醛 | 4.89 | 70.16 |
4-羟基-3-甲氧基苯丙酮 | 23.92 | 1.64 | 丙酮酸甲酯 | 5.09 | 115.83 |
苯系 | 24.36 | 1.14 | 乙烯基乙酸 | 5.79 | 5.12 |
4-羟基-3-甲氧基苯乙酮 | 24.61 | 3.49 | 1,6-庚二烯-4-醇 | 6.02 | 7.52 |
2-甲氧基-4-烯丙基酚 | 21.11 | 39.76 | 乙酰氧基-2-丙酮 | 7.06 | 23.17 |
表6 50%(质量)印染污泥/锯末共热解产物
Table 6 Pyrolysis products of mixed raw material with 50%(mass) textile dyeing sludge
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
苯系化合物 | L-(-)-甘油醛 | 2.31 | 2.68 | ||
甲苯 | 4.58 | 10.07 | 3-甲基-2-丁酮 | 2.46 | 85.38 |
邻二甲苯 | 6.98 | 7.87 | 醋酸 | 2.73 | 201.17 |
苯酚 | 10.45 | 10.37 | 2-丁烯醛 | 2.94 | 29.49 |
4-甲基苯酚 | 13.24 | 5.9 | 羟基丙酮 | 3.07 | 192.02 |
邻甲氧基苯酚 | 13.53 | 117.91 | 2,4-戊二酮 | 3.42 | 11.22 |
2,4-二甲基苯酚 | 15.35 | 1.54 | 乙醚 | 3.73 | 6.38 |
2,5-二羟基苯甲醛 | 15.80 | 0.12 | 2-甲基丙烯酸酐 | 3.77 | 4.17 |
2-甲氧基-4-甲基苯酚 | 16.58 | 98.74 | 1,3-丁二烯 | 4.24 | 2.78 |
3,4-二甲氧基甲苯 | 17.89 | 2.83 | (E)-2-甲基-2-丁烯醛 | 4.33 | 3.34 |
4-乙烯基-2-甲氧基苯酚 | 19.96 | 141.59 | 2-丁炔酸 | 4.41 | 5.92 |
2-甲氧基-4-丙基苯酚 | 21.37 | 4.99 | 1-羟基-2-丁酮 | 4.63 | 6.13 |
3-甲氧基-4-羟基苯甲醛 | 22.33 | 2.55 | 乙酸甲酯 | 4.68 | 101.92 |
4-丙烯基-2-甲氧基苯酚 | 22.43 | 18.95 | 3,3-二甲基丙烯醛 | 4.76 | 21.14 |
(E)-2-甲氧基-4-(1-丙烯基苯酚) | 23.47 | 58.79 | 丁二醛 | 4.89 | 70.16 |
4-羟基-3-甲氧基苯丙酮 | 23.92 | 1.64 | 丙酮酸甲酯 | 5.09 | 115.83 |
苯系 | 24.36 | 1.14 | 乙烯基乙酸 | 5.79 | 5.12 |
4-羟基-3-甲氧基苯乙酮 | 24.61 | 3.49 | 1,6-庚二烯-4-醇 | 6.02 | 7.52 |
2-甲氧基-4-烯丙基酚 | 21.11 | 39.76 | 乙酰氧基-2-丙酮 | 7.06 | 23.17 |
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
脂环化合物 | 炔烃* | 7.56 | 6.18 | ||
甲基环丁烷 | 2.37 | 5.61 | 4-羟基丁酸乙酰酯 | 8.30 | 7.30 |
1,4-环己二烯 | 2.84 | 0.31 | 5,6-二氢-2H-吡喃-2-酮 | 9.22 | 7.62 |
环丙甲基酮 | 3.16 | 1.20 | 1,2-戊二烯 | 9.79 | 7.16 |
甲基1-甲基环丙基 | 3.27 | 0.81 | 顺-2-戊烯-1-醇 | 9.85 | 8.22 |
环己烯 | 7.61 | 0.73 | 4-辛炔 | 12.03 | 4.29 |
2-环戊烯-1-酮 | 8.66 | 9.18 | 烷烃* | 12.29 | 2.28 |
2(5H)-呋喃酮 | 9.09 | 0.49 | 2-甲酚 | 12.59 | 6.24 |
环丙甲酸 | 10.51 | 0.89 | 正辛烷 | 12.87 | 3.46 |
右旋萜二烯 | 11.64 | 0.28 | 戊二醛 | 13.71 | 23.99 |
甲基环戊烯醇酮 | 11.73 | 4.63 | 壬醛 | 13.95 | 11.11 |
乙基环戊烯醇酮 | 14.47 | 0.29 | 酮类* | 14.06 | 4.04 |
2-甲基环戊酮 | 15.49 | 0.21 | 2-乙基己酸 | 14.58 | 2.56 |
含氧杂环 | 1-十四烯 | 21.92 | 7.04 | ||
烯烃* | 16.91 | 1.80 | |||
2-甲基呋喃 | 2.54 | 5.83 | 壬酸 | 18.83 | 3.11 |
碳酸亚乙烯酯 | 3.59 | 2.44 | 1-十三烯 | 19.27 | 3.73 |
某含氧环烃* | 3.83 | 0.32 | 1-十四烯 | 21.92 | 7.40 |
4-甲基-2(H)-呋喃酮 | 4.12 | 1.18 | 呋喃酚 | 22.12 | 1.18 |
糠醛 | 6.08 | 8.07 | 2,3,5,6-四氟茴香醚 | 26.32 | 1.61 |
4-羟基-3-戊烯酸内酯 | 7.02 | 0.43 | 含氮杂环 | ||
2-乙酰基呋喃 | 8.22 | 0.43 | 2-氨基??唑 | 5.27 | 83.79 |
2(5H)-呋喃酮 | 8.39 | 1.23 | 4-甲基-1,3-二氢咪唑-2-酮 | 5.89 | 8.07 |
5-甲基呋喃醛 | 9.75 | 1.52 | 某含氮环烃* | 6.28 | 24.21 |
α-吡喃酮 | 10.24 | 2.52 | 2-吡咯烷酮 | 9.96 | 18.00 |
2-呋喃甲酸 | 11.48 | 0.35 | 1,3-二甲基-2-咪唑啉酮 | 10.90 | 15.55 |
糠醇 | 14.26 | 0.32 | 2-甲基哌嗪 | 12.65 | 46.65 |
链状化合物 | 某含氮环烃* | 13.43 | 15.49 | ||
丙酮醛 | 2.09 | 263.15 | 1,4-二甲基哌嗪 | 16.39 | 32.70 |
2-甲基-1-丁烯-3-炔 | 2.24 | 5.14 | |||
丙烯醇 | 2.28 | 1.06 |
Table 6 continued
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
脂环化合物 | 炔烃* | 7.56 | 6.18 | ||
甲基环丁烷 | 2.37 | 5.61 | 4-羟基丁酸乙酰酯 | 8.30 | 7.30 |
1,4-环己二烯 | 2.84 | 0.31 | 5,6-二氢-2H-吡喃-2-酮 | 9.22 | 7.62 |
环丙甲基酮 | 3.16 | 1.20 | 1,2-戊二烯 | 9.79 | 7.16 |
甲基1-甲基环丙基 | 3.27 | 0.81 | 顺-2-戊烯-1-醇 | 9.85 | 8.22 |
环己烯 | 7.61 | 0.73 | 4-辛炔 | 12.03 | 4.29 |
2-环戊烯-1-酮 | 8.66 | 9.18 | 烷烃* | 12.29 | 2.28 |
2(5H)-呋喃酮 | 9.09 | 0.49 | 2-甲酚 | 12.59 | 6.24 |
环丙甲酸 | 10.51 | 0.89 | 正辛烷 | 12.87 | 3.46 |
右旋萜二烯 | 11.64 | 0.28 | 戊二醛 | 13.71 | 23.99 |
甲基环戊烯醇酮 | 11.73 | 4.63 | 壬醛 | 13.95 | 11.11 |
乙基环戊烯醇酮 | 14.47 | 0.29 | 酮类* | 14.06 | 4.04 |
2-甲基环戊酮 | 15.49 | 0.21 | 2-乙基己酸 | 14.58 | 2.56 |
含氧杂环 | 1-十四烯 | 21.92 | 7.04 | ||
烯烃* | 16.91 | 1.80 | |||
2-甲基呋喃 | 2.54 | 5.83 | 壬酸 | 18.83 | 3.11 |
碳酸亚乙烯酯 | 3.59 | 2.44 | 1-十三烯 | 19.27 | 3.73 |
某含氧环烃* | 3.83 | 0.32 | 1-十四烯 | 21.92 | 7.40 |
4-甲基-2(H)-呋喃酮 | 4.12 | 1.18 | 呋喃酚 | 22.12 | 1.18 |
糠醛 | 6.08 | 8.07 | 2,3,5,6-四氟茴香醚 | 26.32 | 1.61 |
4-羟基-3-戊烯酸内酯 | 7.02 | 0.43 | 含氮杂环 | ||
2-乙酰基呋喃 | 8.22 | 0.43 | 2-氨基??唑 | 5.27 | 83.79 |
2(5H)-呋喃酮 | 8.39 | 1.23 | 4-甲基-1,3-二氢咪唑-2-酮 | 5.89 | 8.07 |
5-甲基呋喃醛 | 9.75 | 1.52 | 某含氮环烃* | 6.28 | 24.21 |
α-吡喃酮 | 10.24 | 2.52 | 2-吡咯烷酮 | 9.96 | 18.00 |
2-呋喃甲酸 | 11.48 | 0.35 | 1,3-二甲基-2-咪唑啉酮 | 10.90 | 15.55 |
糠醇 | 14.26 | 0.32 | 2-甲基哌嗪 | 12.65 | 46.65 |
链状化合物 | 某含氮环烃* | 13.43 | 15.49 | ||
丙酮醛 | 2.09 | 263.15 | 1,4-二甲基哌嗪 | 16.39 | 32.70 |
2-甲基-1-丁烯-3-炔 | 2.24 | 5.14 | |||
丙烯醇 | 2.28 | 1.06 |
1 | 国家生态环境部. 2015年环境统计年报[R]. 北京: 环境保护部, 2015: 15-16. |
Ministry of Ecology and Environment of the People′s Republic of China. Annual report of environmental data statistics[R]. Beijing: Ministry of Environmental Protection, 2015: 15-16. | |
2 | 王玉婷, 赵泽华, 王逸, 等. 我国典型印染行业废水处理污泥污染特征研究[J]. 生态与农村环境学报, 2020, 36(12): 1598-1604. |
Wang Y T, Zhao Z H, Wang Y, et al. Study on the pollution characteristics of typical textile dyeing sludge (TDS) in China[J]. Journal of Ecology and Rural Environment, 2020, 36(12): 1598-1604. | |
3 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
4 | Veses A, Sanahuja-Parejo O, Callén M S, et al. A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels[J]. Waste Management, 2020, 101: 171-179. |
5 | Fang S W, Yu Z S, Lin Y, et al. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis[J]. Bioresource Technology, 2016, 209: 265-272. |
6 | Song Q, Zhao H Y, Xing W L, et al. Effects of various additives on the pyrolysis characteristics of municipal solid waste[J]. Waste Management, 2018, 78: 621-629. |
7 | MA·hadevan R, Adhikari S, Shakya R, et al. Effect of alkali and alkaline earth metals on in situ catalytic fast pyrolysis of lignocellulosic biomass: a microreactor study[J]. Energy & Fuels, 2016, 30(4): 3045-3056. |
8 | Gao N B, Sipra A T, Quan C. Thermogravimetric analysis and pyrolysis product characterization of municipal solid waste using sludge fly ash as additive[J]. Fuel, 2020, 281: 118572. |
9 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.固体生物质燃料工业分析方法: [S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Proximate analysis of solid biofuels: [S]. Beijing: Standards Press of China, 2013. | |
10 | 中华人民共和国国家质量监督检验检疫总局.煤的元素分析方法: [S]. 北京: 中国标准出版社, 2004. |
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China. Ultimate analysis of coal: [S]. Beijing: Standards Press of China, 2004. | |
11 | Zhang W J, Yuan C Y, Xu J, et al. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor[J]. Bioresource Technology, 2015, 183: 255-258. |
12 | 金湓, 李宝霞. 生物质与污水污泥共热解特性研究[J]. 可再生能源, 2014, 32(2): 234-239. |
Jin P, Li B X. The study of co-pyrolysis characteristics of the biomass and sewage sludge[J]. Renewable Energy Resources, 2014, 32(2): 234-239. | |
13 | Jin J W, Wang M Y, Cao Y C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals[J]. Bioresource Technology, 2017, 228: 218-226. |
14 | Gao H J, Zhu Y Z, Fu F, et al. Pyrolysis of Hailar lignite in an autogenerated steam agent[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(2): 973-978. |
15 | Yang Y, Zhu J J, Zhu G K, et al. The effect of high temperature on syngas production by immediate pyrolysis of wet sewage sludge with sawdust[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(3): 1783-1794. |
16 | Zhu J J, Yang Y, Yang L, et al. High quality syngas produced from the co-pyrolysis of wet sewage sludge with sawdust[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5463-5472. |
17 | Li T T, Guo F Q, Li X L, et al. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis[J]. Waste Management, 2018, 76: 544-554. |
18 | 彭海军, 李志光, 夏兴良, 等. 污泥热解残渣催化市政破膜污泥的热解作用[J]. 环境化学, 2014, 33(3): 508-514. |
Peng H J, Li Z G, Xia X L, et al. Catalysis of sludge residual carbon to municipal disintegration-membrance sludge pyrolysis[J]. Environmental Chemistry, 2014, 33(3): 508-514. | |
19 | Zou C, Ma C, Zhao J X, et al. Characterization and non-isothermal kinetics of Shenmu bituminous coal devolatilization by TG-MS[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 309-320. |
20 | Hu M, Gao L, Chen Z H, et al. Syngas production by catalytic in situ steam co-gasification of wet sewage sludge and pine sawdust[J]. Energy Conversion and Management, 2016, 111: 409-416. |
21 | Xiong S J, Zhuo J K, Zhang B P, et al. Effect of moisture content on the characterization of products from the pyrolysis of sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 632-639. |
22 | Fan H J, Zhou H, Wang J. Pyrolysis of municipal sewage sludges in a slowly heating and gas sweeping fixed-bed reactor[J]. Energy Conversion and Management, 2014, 88: 1151-1158. |
23 | Wang M, Li Z S, Huang W B, et al. Coal pyrolysis characteristics by TG-MS and its late gas generation potential[J]. Fuel, 2015, 156: 243-253. |
24 | Fang S W, Yu Z S, Ma X Q, et al. Co-pyrolysis characters between combustible solid waste and paper mill sludge by TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2017, 144: 114-122. |
25 | Brebu M, Tamminen T, Spiridon I. Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 531-539. |
26 | Zhou P, Xiong S J, Zhang Y X, et al. Study on the nitrogen transformation during the primary pyrolysis of sewage sludge by Py-GC/MS and Py-FTIR[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18181-18188. |
27 | Chen L, Wang X H, Yang H P, et al. Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 499-507. |
28 | Liu S Y, Zhang Y N, Fan L L, et al. Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis[J]. Fuel, 2017, 196: 261-268. |
29 | Xie C D, Liu J Y, Zhang X C, et al. Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks[J]. Applied Energy, 2018, 212: 786-795. |
30 | Liu Y H, Cao X, Duan X L, et al. Thermal analysis on combustion characteristics of predried dyeing sludge[J]. Applied Thermal Engineering, 2018, 140: 158-165. |
31 | Xie W H, Huang J L, Liu J Y, et al. Assessing thermal behaviors and kinetics of (co-)combustion of textile dyeing sludge and sugarcane bagasse[J]. Applied Thermal Engineering, 2018, 131: 874-883. |
32 | Xie W H, Wen S T, Liu J Y, et al. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: thermal conversion characteristics, kinetics, and thermodynamics[J]. Bioresource Technology, 2018, 255: 88-95. |
33 | Zhuo Z X, Liu J Y, Sun S Y, et al. Thermogravimetric characteristics of textile dyeing sludge, coal and their blend in N2/O2 and CO2/O2 atmospheres[J]. Applied Thermal Engineering, 2017, 111: 87-94. |
34 | Hu Z F, Ma X Q, Chen Y M, et al. Co-combustion of coal with printing and dyeing sludge: numerical simulation of the process and related NOx emissions[J]. Fuel, 2015, 139: 606-613. |
35 | Peng X W, Ma X Q, Xu Z B. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge[J]. Bioresource Technology, 2015, 180: 288-295. |
36 | 刘敬勇, 卓钟旭, 宁寻安, 等. 印染污泥混燃特性及其燃烧动力学模型[J]. 环境科学学报, 2016, 36(4): 1286-1297. |
Liu J Y, Zhuo Z X, Ning X A, et al. Co-combustion characteristics of textile dyeing sludge and its combustion kinetics model[J]. Acta Scientiae Circumstantiae, 2016, 36(4): 1286-1297. | |
37 | Huang Q X, Wang J, Qiu K Z, et al. Catalytic pyrolysis of petroleum sludge for production of hydrogen-enriched syngas[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16077-16085. |
38 | Fang S W, Gu W L, Chen L, et al. Ultrasonic pretreatment effects on the co-pyrolysis of municipal solid waste and paper sludge through orthogonal test[J]. Bioresource Technology, 2018, 258: 5-11. |
39 | Cheng S, Wang Y H, Gao N B, et al. Pyrolysis of oil sludge with oil sludge ash additive employing a stirred tank reactor[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 511-520. |
40 | Azuara M, Fonts I, Bimbela F, et al. Catalytic post-treatment of the vapors from sewage sludge pyrolysis by means of γ-Al2O3: effect on the liquid product properties[J]. Fuel Processing Technology, 2015, 130: 252-262. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[11] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[12] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[13] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[14] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[15] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||