化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2183-2193.DOI: 10.11949/0438-1157.20220006
贾艳萍1(),丁雪1,刚健1,佟泽为2,张海丰1,张兰河1()
收稿日期:
2022-01-04
修回日期:
2022-03-27
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
张兰河
作者简介:
贾艳萍(1973—),女,博士,教授,基金资助:
Yanping JIA1(),Xue DING1,Jian GANG1,Zewei TONG2,Haifeng ZHANG1,Lanhe ZHANG1()
Received:
2022-01-04
Revised:
2022-03-27
Online:
2022-05-05
Published:
2022-05-24
Contact:
Lanhe ZHANG
摘要:
为了提高Fe/C微电解工艺对油墨废水的处理效率,以金属锰改变传统铁碳填料的成分,采用响应面法优化微电解工艺条件,通过三维荧光光谱、紫外可见光谱、气-质联用色谱等分析处理前后油墨废水的有机物成分及填料表面结构的变化,探究絮凝和降解机理。结果表明:在初始pH为2.79,反应时间为1.58 h,Fe/Mn质量比为3.11,填料总投加量为93.36 g/L的条件下,COD去除率达到87.9%,预测值(87.8%)与实测值相差0.1%,采用响应面法可准确预测COD去除率的变化。经Fe/Mn/C微电解工艺处理后,油墨废水Zeta电位上升,絮凝作用增强。Fe/Mn/C微电解工艺可破坏苯环及共轭双键结构,对类溶解性微生物代谢产物、类芳香族蛋白质类物质以及类腐殖酸类物质的降解效果显著,微电解过程中填料表面生成了铁、锰氧化物,部分氧化物附着在活性炭表面。
中图分类号:
贾艳萍, 丁雪, 刚健, 佟泽为, 张海丰, 张兰河. Mn强化Fe/C微电解工艺条件优化及降解油墨废水机理[J]. 化工学报, 2022, 73(5): 2183-2193.
Yanping JIA, Xue DING, Jian GANG, Zewei TONG, Haifeng ZHANG, Lanhe ZHANG. Optimization of process conditions for Mn enhanced Fe/C microelectrolysis and degradation mechanism of ink wastewater[J]. CIESC Journal, 2022, 73(5): 2183-2193.
编码 | 因素 | 单位 | 水平 | ||
---|---|---|---|---|---|
-1 | 0 | 1 | |||
A | 初始pH | — | 2 | 3 | 4 |
B | 反应时间 | h | 1 | 1.5 | 2 |
C | Fe/Mn质量比 | — | 2 | 3 | 4 |
D | 填料总投加量 | g/L | 80 | 100 | 120 |
表1 响应面实验因素及水平设计
Table 1 The experimental factor and level design for response surface
编码 | 因素 | 单位 | 水平 | ||
---|---|---|---|---|---|
-1 | 0 | 1 | |||
A | 初始pH | — | 2 | 3 | 4 |
B | 反应时间 | h | 1 | 1.5 | 2 |
C | Fe/Mn质量比 | — | 2 | 3 | 4 |
D | 填料总投加量 | g/L | 80 | 100 | 120 |
序号 | 变量取值 | COD去除率/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | 0 | -1 | 0 | -1 | 78.4 |
2 | 0 | 1 | 1 | 0 | 80.5 |
3 | 1 | 0 | 0 | 1 | 78.6 |
4 | 0 | 0 | 1 | 1 | 82.5 |
5 | 0 | 1 | 0 | 1 | 74.2 |
6 | 1 | -1 | 0 | 0 | 79.5 |
7 | -1 | -1 | 0 | 0 | 77.9 |
8 | 0 | 0 | 0 | 0 | 87.2 |
9 | 0 | 0 | -1 | -1 | 82.1 |
10 | 1 | 0 | 1 | 0 | 81.9 |
11 | 0 | 1 | 0 | -1 | 83.9 |
12 | -1 | 1 | 0 | 0 | 81.8 |
13 | 1 | 0 | -1 | 0 | 79.2 |
14 | -1 | 0 | 1 | 0 | 83.0 |
15 | -1 | 0 | -1 | 0 | 83.9 |
16 | 0 | 0 | 0 | 0 | 87.3 |
17 | 0 | -1 | 1 | 0 | 80.2 |
18 | 0 | -1 | -1 | 0 | 78.2 |
19 | 0 | 0 | 0 | 0 | 86.3 |
20 | 0 | 0 | 1 | -1 | 85.3 |
21 | 0 | 0 | 0 | 0 | 87.6 |
22 | 1 | 0 | 0 | -1 | 80.6 |
23 | 0 | 0 | 0 | 0 | 87.9 |
24 | 0 | 0 | -1 | 1 | 80.2 |
25 | 0 | 1 | -1 | 0 | 81.6 |
26 | -1 | 0 | 0 | 1 | 80.9 |
27 | -1 | 0 | 0 | -1 | 84.0 |
28 | 0 | -1 | 0 | 1 | 77.9 |
29 | 1 | 1 | 0 | 0 | 78.5 |
表2 响应面实验组次设计及实验结果
Table 2 Experiment design and experimental results of response surface test group
序号 | 变量取值 | COD去除率/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | 0 | -1 | 0 | -1 | 78.4 |
2 | 0 | 1 | 1 | 0 | 80.5 |
3 | 1 | 0 | 0 | 1 | 78.6 |
4 | 0 | 0 | 1 | 1 | 82.5 |
5 | 0 | 1 | 0 | 1 | 74.2 |
6 | 1 | -1 | 0 | 0 | 79.5 |
7 | -1 | -1 | 0 | 0 | 77.9 |
8 | 0 | 0 | 0 | 0 | 87.2 |
9 | 0 | 0 | -1 | -1 | 82.1 |
10 | 1 | 0 | 1 | 0 | 81.9 |
11 | 0 | 1 | 0 | -1 | 83.9 |
12 | -1 | 1 | 0 | 0 | 81.8 |
13 | 1 | 0 | -1 | 0 | 79.2 |
14 | -1 | 0 | 1 | 0 | 83.0 |
15 | -1 | 0 | -1 | 0 | 83.9 |
16 | 0 | 0 | 0 | 0 | 87.3 |
17 | 0 | -1 | 1 | 0 | 80.2 |
18 | 0 | -1 | -1 | 0 | 78.2 |
19 | 0 | 0 | 0 | 0 | 86.3 |
20 | 0 | 0 | 1 | -1 | 85.3 |
21 | 0 | 0 | 0 | 0 | 87.6 |
22 | 1 | 0 | 0 | -1 | 80.6 |
23 | 0 | 0 | 0 | 0 | 87.9 |
24 | 0 | 0 | -1 | 1 | 80.2 |
25 | 0 | 1 | -1 | 0 | 81.6 |
26 | -1 | 0 | 0 | 1 | 80.9 |
27 | -1 | 0 | 0 | -1 | 84.0 |
28 | 0 | -1 | 0 | 1 | 77.9 |
29 | 1 | 1 | 0 | 0 | 78.5 |
变差来源 | 平方和 | 自由度 | 均方和 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 320.45 | 14 | 22.89 | 22.76 | <0.0001 | 极显著 |
A | 14.39 | 1 | 14.39 | 14.31 | 0.0020 | 极显著 |
B | 5.77 | 1 | 5.77 | 5.74 | 0.0312 | 显著 |
C | 5.35 | 1 | 5.35 | 5.32 | 0.0370 | 显著 |
D | 33.70 | 1 | 33.70 | 33.51 | <0.0001 | 极显著 |
AB | 6.15 | 1 | 6.15 | 6.11 | 0.0268 | 显著 |
AC | 3.24 | 1 | 3.24 | 3.22 | 0.0943 | 不显著 |
AD | 0.30 | 1 | 0.30 | 0.30 | 0.5921 | 不显著 |
BC | 2.42 | 1 | 2.42 | 2.40 | 0.1433 | 不显著 |
BD | 20.84 | 1 | 20.84 | 20.72 | 0.0005 | 极显著 |
CD | 0.20 | 1 | 0.20 | 0.20 | 0.6605 | 不显著 |
A2 | 60.04 | 1 | 60.04 | 59.69 | <0.0001 | 极显著 |
B2 | 174.37 | 1 | 174.37 | 173.36 | <0.0001 | 极显著 |
C2 | 23.88 | 1 | 23.88 | 23.74 | 0.0002 | 极显著 |
D2 | 65.74 | 1 | 65.74 | 65.36 | <0.0001 | 极显著 |
残差 | 14.08 | 14 | 1.01 | |||
失拟项 | 12.67 | 10 | 1.27 | 3.59 | 0.1149 | 不显著 |
误差 | 1.41 | 4 | 0.35 | |||
合计 | 334.53 | 28 | ||||
标准偏差 | 1.00 | 相关系数 | 0.9579 | |||
平均值 | 81.76 | 校正决定系数 | 0.9158 | |||
变异系数 | 1.23 | 预测相关系数 | 0.7753 | |||
压力系数 | 75.18 | 信噪比 | 16.129 |
表3 COD去除率(响应值Y)模型方差分析
Table 3 Variance analysis of COD removal efficiency (response value Y) model
变差来源 | 平方和 | 自由度 | 均方和 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 320.45 | 14 | 22.89 | 22.76 | <0.0001 | 极显著 |
A | 14.39 | 1 | 14.39 | 14.31 | 0.0020 | 极显著 |
B | 5.77 | 1 | 5.77 | 5.74 | 0.0312 | 显著 |
C | 5.35 | 1 | 5.35 | 5.32 | 0.0370 | 显著 |
D | 33.70 | 1 | 33.70 | 33.51 | <0.0001 | 极显著 |
AB | 6.15 | 1 | 6.15 | 6.11 | 0.0268 | 显著 |
AC | 3.24 | 1 | 3.24 | 3.22 | 0.0943 | 不显著 |
AD | 0.30 | 1 | 0.30 | 0.30 | 0.5921 | 不显著 |
BC | 2.42 | 1 | 2.42 | 2.40 | 0.1433 | 不显著 |
BD | 20.84 | 1 | 20.84 | 20.72 | 0.0005 | 极显著 |
CD | 0.20 | 1 | 0.20 | 0.20 | 0.6605 | 不显著 |
A2 | 60.04 | 1 | 60.04 | 59.69 | <0.0001 | 极显著 |
B2 | 174.37 | 1 | 174.37 | 173.36 | <0.0001 | 极显著 |
C2 | 23.88 | 1 | 23.88 | 23.74 | 0.0002 | 极显著 |
D2 | 65.74 | 1 | 65.74 | 65.36 | <0.0001 | 极显著 |
残差 | 14.08 | 14 | 1.01 | |||
失拟项 | 12.67 | 10 | 1.27 | 3.59 | 0.1149 | 不显著 |
误差 | 1.41 | 4 | 0.35 | |||
合计 | 334.53 | 28 | ||||
标准偏差 | 1.00 | 相关系数 | 0.9579 | |||
平均值 | 81.76 | 校正决定系数 | 0.9158 | |||
变异系数 | 1.23 | 预测相关系数 | 0.7753 | |||
压力系数 | 75.18 | 信噪比 | 16.129 |
1 | Hata M, Amano Y, Thiravetyan P, et al. Preparation of bamboo chars and bamboo activated carbons to remove color and COD from ink wastewater[J]. Water Environment Research, 2016, 88(1): 87-96. |
2 | Khannous L, Elleuch A, Fendri I, et al. Treatment of printing wastewater by a combined process of coagulation and biosorption for a possible reuse in agriculture[J]. Desalination and Water Treatment, 2016, 57(13): 5723-5729. |
3 | 何德文, 秦艳, 王伟良, 等. 超声氧化联合处理油墨废水试验研究[J]. 中南大学学报(自然科学版), 2009, 40(6): 1482-1487. |
He D W, Qin Y, Wang W L, et al. Experimental research on treatment of ink wastewater by combination technology of ultrasonic irradiation and Fenton oxidation[J]. Journal of Central South University (Science and Technology), 2009, 40(6): 1482-1487. | |
4 | 曹瑞春, 魏先福, 王琪, 等. 水性油墨分散技术研究进展[J]. 精细化工, 2017, 34(3): 241-249. |
Cao R C, Wei X F, Wang Q, et al. Research progress on dispersion technique of water-based ink[J]. Fine Chemicals, 2017, 34(3): 241-249. | |
5 | Bhaviva R R, Umadevi M, Parimaladevi R. Enhanced photocatalytic degradation of textile dyeing wastewater under UV and visible light using ZnO/MgO nanocomposites as a novel photocatalyst[J]. Particulate Science and Technology, 2020, 38(7): 812-820. |
6 | Bae W, Han D, Kim E, et al. Enhanced bioremoval of refractory compounds from dyeing wastewater using optimized sequential anaerobic/aerobic process[J]. International Journal of Environmental Science and Technology, 2016, 13(7): 1675-1684. |
7 | Zhang L L, Yue Q Y, Yang K L, et al. Enhanced phosphorus and ciprofloxacin removal in a modified BAF system by configuring Fe-C micro electrolysis: investigation on pollutants removal and degradation mechanisms[J]. Journal of Hazardous Materials, 2018, 342: 705-714. |
8 | 张先炳. 臭氧/微电解工艺处理活性偶氮染料废水的效能与作用机制[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
Zhang X B. Treatment efficiency and mechanism of reactive azo dyes containning wastewater by ozonated internal electrolytic process[D]. Harbin: Harbin Institute of Technology, 2015. | |
9 | Yang B, Gao Y Y, Yan D M, et al. Degradation characteristics of color index direct blue 15 dye using iron-carbon micro-electrolysis coupled with H2O2 [J]. International Journal of Environmental Research and Public Health, 2018, 15(7): 1523. |
10 | 张涛, 呼世斌, 周丹. 铁屑微电解法处理水性油墨废水的研究[J]. 环境污染治理技术与设备, 2005, 6(5): 67-70. |
Zhang T, Hu S B, Zhou D. A study on water-based ink wastewater treatment with ferric filings micro electrolysis[J]. Techniques and Equipment for Environmental Pollution Control, 2005, 6(5): 67-70. | |
11 | 王顺, 柳荣展, 张宾, 等. 混凝-热固化-微电解法处理高浓度水性油墨废水[J]. 水处理技术, 2015, 41(4): 122-124, 131. |
Wang S, Liu R Z, Zhang B, et al. Treating water-based ink wastewater by coagulation-thermocuring-micro electrolysis[J]. Technology of Water Treatment, 2015, 41(4): 122-124, 131. | |
12 | 石键韵, 陈欣义. 微电解处理技术在PCB油墨废水预处理的试验研究[J]. 广东化工, 2012, 39(2): 237-238, 234. |
Shi J Y, Chen X Y. The study of treatment of electroplating PCB printing wastewater by Fe-C micro-electrolysis process[J]. Guangdong Chemical Industry, 2012, 39(2): 237-238, 234. | |
13 | Tebo B M, Bargar J R, Clement B G, et al. Biogenic manganese oxides: properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32: 287-328. |
14 | 李彤, 杨浩, 杨凯文, 等. 铁-锰-碳微电解法处理对苯二酚废水[J]. 化工环保, 2015, 35(2): 127-131. |
Li T, Yang H, Yang K W, et al. Treatment of hydroquinone-containing wastewater by Fe-Mn-C microelectrolysis process[J]. Environmental Protection of Chemical Industry, 2015, 35(2): 127-131. | |
15 | 周升旺. MnCl2介质中金属锰与水的反应[J]. 中国锰业, 2008, 26(4): 37-40. |
Zhou S W. A study of reaction between metallic manganese and water in MnCl2 solution[J]. China’s Manganese Industry, 2008, 26(4): 37-40. | |
16 | 俸志荣, 焦纬洲, 刘有智, 等. 铁碳微电解处理含硝基苯废水[J]. 化工学报, 2015, 66(3): 1150-1155. |
Feng Z R, Jiao W Z, Liu Y Z, et al. Treatment of nitrobenzene-containing wastewater by iron-carbon micro-electrolysis[J]. CIESC Journal, 2015, 66(3): 1150-1155. | |
17 | 杨颖, 潘兆平, 李绮丽, 等. 响应面法优化赣南脐橙全果果酱微波制作工艺[J]. 中国食品学报, 2020, 20(12): 167-175. |
Yang Y, Pan Z P, Li Q L, et al. Optimization of microwave production process of Gannan navel orange whole fruit jam by response surface methodology[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(12): 167-175. | |
18 | 陈凡雨, 徐仲, 尤宏, 等. 缺氧MBR-MMR处理海水养殖废水性能及膜污染特性[J]. 环境科学, 2020, 41(6): 2762-2770. |
Chen F Y, Xu Z, You H, et al. Performance and membrane fouling characteristics of mariculture wastewater treated by anoxic MBR-MMR[J]. Environmental Science, 2020, 41(6): 2762-2770. | |
19 | Ding Y, Tian Y, Li Z P, et al. A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor[J]. Bioresource Technology, 2015, 192: 105-114. |
20 | 张兰河, 张明爽, 郭静波, 等. Fe3+在A2O工艺缺氧区的转化规律及其对污泥絮凝性的影响[J]. 化工学报, 2019, 70(3): 1089-1098. |
Zhang L H, Zhang M S, Guo J B, et al. Transformation of Fe3+ and its effect on anoxic sludge flocculation in A2O process[J]. CIESC Journal, 2019, 70(3): 1089-1098. | |
21 | 贾艳萍, 单晓倩, 宋祥飞, 等. 响应面法优化餐饮废水混凝工艺研究[J]. 化工学报, 2021, 72(9): 4931-4940. |
Jia Y P, Shan X Q, Song X F, et al. Optimization of coagulation process of catering wastewater by response surface methodology[J]. CIESC Journal, 2021, 72(9): 4931-4940. | |
22 | 陈炜鸣, 张爱平, 李民, 等. O3/H2O2降解垃圾渗滤液浓缩液的氧化特性及光谱解析[J]. 中国环境科学, 2017, 37(6): 2160-2172. |
Chen W M, Zhang A P, Li M, et al. Decomposition of organics in concentrated landfill leachate with ozone/hydrogen peroxide system: oxidation characteristics and spectroscopic analyses[J]. China Environmental Science, 2017, 37(6): 2160-2172. | |
23 | 邓禺南, 陈炜鸣, 罗梓尹, 等. MnO2催化O3处理准好氧矿化垃圾床渗滤液尾水中难降解有机物[J]. 中国环境科学, 2018, 38(11): 4130-4140. |
Deng Y N, Chen W M, Luo Z Y, et al. Removal of refractory organics from SAARB treated landfill leachate by O3/MnO2 process[J]. China Environmental Science, 2018, 38(11): 4130-4140. | |
24 | 李平, 高星, 吴锦华, 等. 垃圾焚烧厂渗滤液处置工艺中溶解性有机物变化特性[J]. 中国环境科学, 2014, 34(9): 2279-2284. |
Li P, Gao X, Wu J H, et al. Characteristics of dissolved organic matters in waste incineration plant leachate treatment process[J]. China Environmental Science, 2014, 34(9): 2279-2284. | |
25 | 张正义, 张千, 楼紫阳, 等. 催化臭氧氧化处理渗滤液RO浓液的氧化特性及光谱分析[J]. 化工学报, 2021, 72(10): 5362-5371. |
Zhang Z Y, Zhang Q, Lou Z Y, et al. Oxidation characteristics and spectral analysis of leachate reverse osmosis concentrate by catalytic ozonation[J]. CIESC Journal, 2021, 72(10): 5362-5371. | |
26 | Imai A, Onuma K, Inamori Y, et al. Effects of pre-ozonation in refractory leachate treatment by the biological activated carbon fluidized bed process[J]. Environmental Technology, 1998, 19(2): 213-221. |
27 | 张春华, 黄廷林, 方开凯, 等. 同温混合初期主库区沉积物间隙水DOM的光谱特征: 以周村水库为例[J]. 中国环境科学, 2016, 36(10): 3048-3055. |
Zhang C H, Huang T L, Fang K K, et al. Spectral characteristics of DOM in sediment interstitial water of the main reservoir area during the initial stage of isothermal mixing: a case study of Zhoucun Reservoir[J]. China Environmental Science, 2016, 36(10): 3048-3055. | |
28 | 汤超, 廖宗廷, 钟倩, 等. 新疆软玉仔料中黑色树枝状物质的拉曼光谱和显微结构特征[J]. 光谱学与光谱分析, 2017, 37(2): 456-460. |
Tang C, Liao Z T, Zhong Q, et al. Raman spectra and microstructure characteristics of dendrite in Xinjiang nephrite gravel[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 456-460. | |
29 | 许淳淳, 王紫色, 王菊琳. 模拟土壤介质中仿古铸铁腐蚀产物的形貌及其生长过程[J]. 化工学报, 2005, 56(12): 2373-2379. |
Xu C C, Wang Z S, Wang J L. Appearance and formation process of corrosion products on archaeological iron in simulated soil media[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(12): 2373-2379. | |
30 | 曹佩根, 徐浩元, 曹文东, 等. 3.4%NaCl介质中铁点蚀行为的表面拉曼光谱成像研究[J]. 光谱学与光谱分析, 2000, 20(6): 800-802. |
Cao P G, Xu H Y, Cao W D, et al. Two-dimensional surface Raman imaging of a roughened iron electrode in saline solution[J]. Spectroscopy and Spectral Analysis, 2000, 20(6): 800-802. | |
31 | 顾伟, 曹佩根, 顾仁敖. 表面增强拉曼光谱在铁腐蚀与防护研究中的应用[J]. 光谱学与光谱分析, 2005, 25(9): 1412-1417. |
Gu W, Cao P G, Gu R A. Surface-enhanced Raman spectroscopy in studies of corrosion and inhibition on an iron surface[J]. Spectroscopy and Spectral Analysis, 2005, 25(9): 1412-1417. | |
32 | 张亚萍, 王金慧, 于濂清, 等. 气相法原位合成氧化铁/黄铁矿材料及其光电性能[J]. 中国石油大学学报(自然科学版), 2019, 43(2): 171-176. |
Zhang Y P, Wang J H, Yu L Q, et al. In situ synthesis of iron oxide/pyrite composite by vapour deposition process and its photoelectricity properties[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(2): 171-176. | |
33 | 段鉴书, 李艳, 许晓明, 等. 三斜水钠锰矿层间阳离子交换作用的拉曼谱学[J]. 地球科学, 2018, 43(5): 1623-1634. |
Duan J S, Li Y, Xu X M, et al. Raman spectroscopy of ion exchange in interlayer of triclinic birnessite[J]. Earth Science, 2018, 43(5): 1623-1634. | |
34 | 童庆松, 杨勇, 连锦明. 掺钛电解二氧化锰制掺杂LiMn2O4的电化学性能[J]. 无机化学学报, 2005, 21(12): 1784-1790. |
Tong Q S, Yang Y, Lian J M. Electrochemical performance of doped LiMn2O4 synthesized by used titanium doped electrolytic manganese dioxide[J]. Chinese Journal of Inorganic Chemistry, 2005, 21(12): 1784-1790. | |
35 | 何婧, 徐志广, 曾允秀, 等. 取代基对咔咯锰(V)-氧配合物Mn―O的成键影响[J]. 物理化学学报, 2012, 28(7): 1658-1664. |
He J, Xu Z G, Zeng Y X, et al. Effect of substituents on Mn―O bond in oxo-manganese(V) corrole complexes[J]. Acta Physico-Chimica Sinica, 2012, 28(7): 1658-1664. | |
36 | 焦金珍, 李时卉, 黄碧纯. 石墨烯负载MnO x 催化剂的制备及其低温NH3-SCR活性[J]. 物理化学学报, 2015, 31(7): 1383-1390. |
Jiao J Z, Li S H, Huang B C. Preparation of manganese oxides supported on graphene catalysts and their activity in low-temperature NH3-SCR[J]. Acta Physico-Chimica Sinica, 2015, 31(7): 1383-1390. | |
37 | 朱秀清, 王子玥, 李美莹, 等. 热处理对汉麻乳稳定性的影响及蛋白结构表征[J]. 食品科学, 2021, 42(7): 68-73. |
Zhu X Q, Wang Z Y, Li M Y, et al. Effect of heat treatment on the stability of hemp seed milk and characterization of protein structure[J]. Food Science, 2021, 42(7): 68-73. | |
38 | 崔翔, 朱长歧, 胡明鉴, 等. 珊瑚砂渗透性的微观机理研究[J]. 岩土工程学报, 2020, 42(12): 2336-2341. |
Cui X, Zhu C Q, Hu M J, et al. Microscopic mechanism of permeability of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2336-2341. | |
39 | 张学铭, 何北海, 李军荣, 等. pH值和金属阳离子对水性油墨胶体稳定性的影响[J]. 中国造纸学报, 2007, 22(1): 59-62. |
Zhang X M, He B H, Li J R, et al. Effect of inorganic electrolytes on the colloidal stability of water-based inks[J]. Transactions of China Pulp and Paper, 2007, 22(1): 59-62. | |
40 | 贾艳萍, 张真, 佟泽为, 等. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801. |
Jia Y P, Zhang Z, Tong Z W, et al. Study on efficiency and mechanism of iron-carbon microelectrolysis treatment of dyeing wastewater[J]. CIESC Journal, 2020, 71(4): 1791-1801. | |
41 | 王新鸽, 程芸, 朱荣耀, 等. 不同化学助剂对水性印刷油墨颗粒粒径的影响[J]. 包装工程, 2019, 40(13): 129-136. |
Wang X G, Cheng Y, Zhu R Y, et al. Effects of different chemical additives on the particle size of water-based printing ink particles[J]. Packaging Engineering, 2019, 40(13): 129-136. | |
42 | 肖淑敏, 赵建海, 魏磊, 等. 搅拌条件对氢氧化镁混凝性能及絮体特性的影响[J]. 化工进展, 2018, 37(2): 761-766. |
Xiao S M, Zhao J H, Wei L, et al. Effects of mixing on magnesium hydroxide coagulation performance and floc properties[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 761-766. | |
43 | 曾悦. 物化生化组合工艺处理染料废水的研究与应用[D]. 南昌: 南昌大学, 2018. |
Zeng Y. Study and application of the treatment of dye wastewater by the physical-chemical and biochemical combined processes[D]. Nanchang: Nanchang University, 2018. | |
44 | Zhang W X, Li X M, Yang Q, et al. Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system[J]. Chemosphere, 2019, 216: 749-756. |
45 | 潘碌亭, 吴锦峰, 罗华飞. 微电解-UASB-接触氧化处理羧甲基纤维素废水[J]. 化工学报, 2010, 61(5): 1275-1281. |
Pan L T, Wu J F, Luo H F. Microelectrolysis-UASB-contact oxidation process for treatment of carboxymethyl cellulose production wastewater[J]. CIESC Journal, 2010, 61(5): 1275-1281. | |
46 | 杨硕, 余薇薇, 杨伦, 等. 纳米零价铁降解水中17β-雌二醇的作用机制[J]. 化工进展, 2020, 39(9): 3826-3834. |
Yang S, Yu W W, Yang L, et al. Degradation mechanism of 17β-estradiol by nano-zero valent iron in aqueous solution[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3826-3834. | |
47 | 盛超. 锰炭微电解填料的制备及在有机工业废水处理中的应用[D]. 武汉: 武汉理工大学, 2017. |
Sheng C. The preparation of manganese-carbon micro-electrolysis packing and its application in organic industrial wastewater[D]. Wuhan: Wuhan University of Technology, 2017. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[6] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[10] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[11] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[12] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[13] | 毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579. |
[14] | 胡南, 陶德敏, 杨照岚, 王学兵, 张向旭, 刘玉龙, 丁德馨. 铁炭微电解与硫酸盐还原菌耦合修复铀尾矿库渗滤水的研究[J]. 化工学报, 2023, 74(6): 2655-2667. |
[15] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||