化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2774-2789.DOI: 10.11949/0438-1157.20220383
张劢1,2(),田瑶1,2,郭之旗1,2,王叶1,2,窦广进1,2,宋浩1,2()
收稿日期:
2022-03-16
修回日期:
2022-05-25
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
宋浩
作者简介:
张劢(1997—),女,硕士研究生,基金资助:
Mai ZHANG1,2(),Yao TIAN1,2,Zhiqi GUO1,2,Ye WANG1,2,Guangjin DOU1,2,Hao SONG1,2()
Received:
2022-03-16
Revised:
2022-05-25
Online:
2022-07-05
Published:
2022-08-01
Contact:
Hao SONG
摘要:
光催化-生物杂合系统耦合了光催化对光能的高收集效率和广谱吸收性能,以及生物催化温和、高效且高特异性转化的优势,可实现多种高值化学品和燃料分子的绿色、可持续合成,符合“碳中和”发展大方向。按照生物催化载体的不同,光催化-生物杂合系统可分为:光催化-生物酶杂合系统和光催化-微生物杂合系统两大类。光催化-生物酶杂合系统根据作用机制细分为:辅因子介导的间接反应体系、直接电子传递的反应体系以及混合型光催化-生物酶杂合系统;光催化-微生物杂合系统分为:直接电子传递的胞外供能模式、化学物质介导的胞外供能模式以及胞内的能量供给模式。对这些模式的具体作用机制,以及存在的优缺点和关键问题做出了综合评述,并对该领域提出了未来展望。
中图分类号:
张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals[J]. CIESC Journal, 2022, 73(7): 2774-2789.
1 | Schoedel A, Ji Z, Yaghi O M. The role of metal-organic frameworks in a carbon-neutral energy cycle[J]. Nature Energy, 2016, 1: 16034. |
2 | Mustafa A, Lougou B G, Shuai Y, et al. Current technology development for CO2 utilization into solar fuels and chemicals: a review[J]. Journal of Energy Chemistry, 2020, 49: 96-123. |
3 | Chu S, Cui Y, Liu N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22. |
4 | Chang X X, Wang T, Gong J L. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts[J]. Energy & Environmental Science, 2016, 9(7): 2177-2196. |
5 | Zhang H W, Ming J T, Zhao J W, et al. High-rate, tunable syngas production with artificial photosynthetic cells[J]. Angewandte Chemie International Edition, 2019, 58(23): 7718-7722. |
6 | Tashiro Y, Hirano S, Matson M M, et al. Electrical-biological hybrid system for CO2 reduction[J]. Metabolic Engineering, 2018, 47: 211-218. |
7 | Goeppert A, Czaun M, Jones J P, et al. Recycling of carbon dioxide to methanol and derived products-closing the loop[J]. Chemical Society Reviews, 2014, 43(23): 7995-8048. |
8 | Riplinger C, Sampson M D, Ritzmann A M, et al. Mechanistic contrasts between manganese and rhenium bipyridine electrocatalysts for the reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2014, 136(46): 16285-16298. |
9 | Taheri A, Thompson E J, Fettinger J C, et al. An iron electrocatalyst for selective reduction of CO2 to formate in water: including thermochemical insights[J]. ACS Catalysis, 2015, 5(12): 7140-7151. |
10 | Appel A M, Bercaw J E, Bocarsly A B, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical Reviews, 2013, 113(8): 6621-6658. |
11 | Marnellos G, Stoukides M. Ammonia synthesis at atmospheric pressure[J]. Science, 1998, 282(5386): 98-100. |
12 | Song Q, Sun C C, Wang Z, et al. Directed charge transfer in all solid state heterojunction of Fe doped MoS2 and C-TiO2 nanosheet for enhanced nitrogen photofixation[J]. Materials Today Physics, 2021, 21: 100563. |
13 | Brown K A, King P W. Coupling biology to synthetic nanomaterials for semi-artificial photosynthesis[J]. Photosynthesis Research, 2020, 143(2): 193-203. |
14 | Sakimoto K K, Kornienko N, Cestellos-Blanco S, et al. Physical biology of the materials-microorganism interface[J]. Journal of the American Chemical Society, 2018, 140(6): 1978-1985. |
15 | Sakimoto K K, Wong A B, Yang P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
16 | Ma L Q, Fang Z, Wang Y Z, et al. Photo-driven highly efficient one-step CO2 biomethanation with engineered photo-synthetic bacteria Rhodopseudomonas palustris [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9616-9621. |
17 | Case A E, Atsumi S. Cyanobacterial chemical production[J]. Journal of Biotechnology, 2016, 231: 106-114. |
18 | Zheng Y N, Harris D F, Yu Z, et al. A pathway for biological methane production using bacterial iron-only nitrogenase[J]. Nature Microbiology, 2018, 3(3): 281-286. |
19 | Wang B, Jiang Z F, Yu J C, et al. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system[J]. Nanoscale, 2019, 11(19): 9296-9301. |
20 | Gong F Y, Li Y. Fixing carbon, unnaturally[J]. Science, 2016, 354(6314): 830-831. |
21 | Sahoo P C, Pant D, Kumar M, et al. Material-microbe interfaces for solar-driven CO2 bioelectrosynthesis[J]. Trends in Biotechnology, 2020, 38(11): 1245-1261. |
22 | Yadav R K, Baeg J O, Oh G H, et al. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2 [J]. Journal of the American Chemical Society, 2012, 134(28): 11455-11461. |
23 | Brown K A, Harris D F, Wilker M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450. |
24 | Harris A W, Harguindey A, Patalano R E, et al. Investigating protein-nanocrystal interactions for photodriven activity[J]. ACS Applied Bio Materials, 2020, 3(2): 1026-1035. |
25 | Litman Z C, Wang Y J, Zhao H M, et al. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis[J]. Nature, 2018, 560(7718): 355-359. |
26 | Evans R M, Siritanaratkul B, Megarity C F, et al. The value of enzymes in solar fuels research-efficient electrocatalysts through evolution[J]. Chemical Society Reviews, 2019, 48(7): 2039-2052. |
27 | Kang F Y, Yu L, Xia Y, et al. Rational design of a miniature photocatalytic CO2-reducing enzyme[J]. ACS Catalysis, 2021, 11(9): 5628-5635. |
28 | Yuan M W, Kummer M J, Milton R D, et al. Efficient NADH regeneration by a redox polymer-immobilized enzymatic system[J]. ACS Catalysis, 2019, 9(6): 5486-5495. |
29 | Kim J, Lee S H, Tieves F, et al. Biocatalytic C ̿ C bond reduction through carbon nanodot-sensitized regeneration of NADH analogues[J]. Angewandte Chemie International Edition, 2018, 57(42): 13825-13828. |
30 | Yadav R K, Oh G H, Park N J, et al. Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system[J]. Journal of the American Chemical Society, 2014, 136(48): 16728-16731. |
31 | Tian Y, Zhou Y N, Zong Y C, et al. Construction of functionally compartmental inorganic photocatalyst-enzyme system via imitating chloroplast for efficient photoreduction of CO2 to formic acid[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 34795-34805. |
32 | Ji X Y, Wang J, Mei L, et al. Porphyrin/SiO2/Cp*Rh(bpy)Cl hybrid nanoparticles mimicking chloroplast with enhanced electronic energy transfer for biocatalyzed artificial photosynthesis[J]. Advanced Functional Materials, 2018, 28(9): 1705083. |
33 | Le T K, Park J H, Choi D S, et al. Solar-driven biocatalytic C-hydroxylation through direct transfer of photoinduced electrons[J]. Green Chemistry, 2019, 21(3): 515-525. |
34 | Lee S H, Choi D S, Pesic M, et al. Cofactor-free, direct photoactivation of enoate reductases for the asymmetric reduction of C ̿ C bonds[J]. Angewandte Chemie International Edition, 2017, 56(30): 8681-8685. |
35 | Zhang L Y, Morello G, Carr S B, et al. Aerobic photocatalytic H2 production by a [NiFe] hydrogenase engineered to place a silver nanocluster in the electron relay[J]. Journal of the American Chemical Society, 2020, 142(29): 12699-12707. |
36 | Zhang L Y, Beaton S E, Carr S B, et al. Direct visible light activation of a surface cysteine-engineered [NiFe]-hydrogenase by silver nanoclusters[J]. Energy & Environmental Science, 2018, 11(12): 3342-3348. |
37 | Miller M, Robinson W E, Oliveira A R, et al. Interfacing formate dehydrogenase with metal oxides for the reversible electrocatalysis and solar-driven reduction of carbon dioxide[J]. Angewandte Chemie International Edition, 2019, 58(14): 4601-4605. |
38 | Gentil S, Che Mansor S M, Jamet H, et al. Oriented immobilization of [NiFeSe] hydrogenases on covalently and noncovalently functionalized carbon nanotubes for H2/air enzymatic fuel cells[J]. ACS Catalysis, 2018, 8(5): 3957-3964. |
39 | Brown K A, Wilker M B, Boehm M, et al. Photocatalytic regeneration of nicotinamide cofactors by quantum dot-enzyme biohybrid complexes[J]. ACS Catalysis, 2016, 6(4): 2201-2204. |
40 | Holá K, Pavliuk M V, Németh B, et al. Carbon dots and [FeFe] hydrogenase biohybrid assemblies for efficient light-driven hydrogen evolution[J]. ACS Catalysis, 2020, 10(17): 9943-9952. |
41 | Bertram J R, Ding Y C, Nagpal P. Gold nanoclusters cause selective light-driven biochemical catalysis in living nano-biohybrid organisms[J]. Nanoscale Advances, 2020, 2(6): 2363-2370. |
42 | Sokol K P, Robinson W E, Oliveira A R, et al. Photoreduction of CO2 with a formate dehydrogenase driven by photosystem Ⅱ using a semi-artificial Z-scheme architecture[J]. Journal of the American Chemical Society, 2018, 140(48): 16418-16422. |
43 | Fang X, Kalathil S, Reisner E. Semi-biological approaches to solar-to-chemical conversion[J]. Chemical Society Reviews, 2020, 49(14): 4926-4952. |
44 | Brown K A, Dayal S, Ai X, et al. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production[J]. Journal of the American Chemical Society, 2010, 132(28): 9672-9680. |
45 | Hutton G A M, Reuillard B, Martindale B C M, et al. Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes[J]. Journal of the American Chemical Society, 2016, 138(51): 16722-16730. |
46 | Warnan J, Reisner E. Synthetic organic design for solar fuel systems[J]. Angewandte Chemie International Edition, 2020, 59(40): 17344-17354. |
47 | Hutton G A M, Martindale B C M, Reisner E. Carbon dots as photosensitisers for solar-driven catalysis[J]. Chemical Society Reviews, 2017, 46(20): 6111-6123. |
48 | Ganesan V, Sivanesan D, Yoon S. Correlation between the structure and catalytic activity of [Cp*Rh(substituted bipyridine)] complexes for NADH regeneration[J]. Inorganic Chemistry, 2017, 56(3): 1366-1374. |
49 | Tan B X, Hickey D P, Milton R D, et al. Regeneration of the NADH cofactor by a rhodium complex immobilized on multi-walled carbon nanotubes[J]. Journal of the Electrochemical Society, 2014, 162(3): H102-H107. |
50 | Lee S M, Choe H, Cho D H, et al. Communication—highly efficient electroenzymatic NADH regeneration by an electron-relay flavoenzyme[J]. Journal of the Electrochemical Society, 2016, 163(5): G50-G52. |
51 | Zhang L, Vilà N, Kohring G W, et al. Covalent immobilization of (2, 2'-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complex on a porous carbon electrode for efficient electrocatalytic NADH regeneration[J]. ACS Catalysis, 2017, 7(7): 4386-4394. |
52 | Stufano P, Paris A R, Bocarsly A. Photoelectrochemical NADH regeneration using Pt-modified p-GaAs semiconductor electrodes[J]. ChemElectroChem, 2017, 4(5): 1066-1073. |
53 | Morello G, Siritanaratkul B, Megarity C F, et al. Efficient electrocatalytic CO2 fixation by nanoconfined enzymes via a C3-to-C4 reaction that is favored over H2 production[J]. ACS Catalysis, 2019, 9(12): 11255-11262. |
54 | Narayan A. Enzymes trapped and zapped for use outside cells[J]. Nature, 2019, 567(7748): 317-318. |
55 | Ma C L, Liu M X, You C, et al. Engineering a diaphorase via directed evolution for enzymatic biofuel cell application[J]. Bioresources and Bioprocessing, 2020, 7: 23. |
56 | Shoji K, Akiyama Y, Suzuki M, et al. Biofuel cell backpacked insect and its application to wireless sensing[J]. Biosensors and Bioelectronics, 2016, 78: 390-395. |
57 | Kurisu G, Kusunoki M, Katoh E, et al. Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP+ reductase[J]. Nature Structural Biology, 2001, 8(2): 117-121. |
58 | Mosebach L, Heilmann C, Mutoh R, et al. Association of ferredoxin:NADP+ oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii [J]. Photosynthesis Research, 2017, 134(3): 291-306. |
59 | Kim E J, Kim J E, Zhang Y H P J. Ultra-rapid rates of water splitting for biohydrogen gas production through in vitro artificial enzymatic pathways[J]. Energy & Environmental Science, 2018, 11(8): 2064-2072. |
60 | Zhu Z G, Zhang Y H P. In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose[J]. Metabolic Engineering, 2017, 39: 110-116. |
61 | Bergsma J, van Dongen M B M, Konings W N. Purification and characterization of NADH dehydrogenase from Bacillus subtilis [J]. European Journal of Biochemistry, 1982, 128(1): 151-157. |
62 | Wang Y O, Liu X, Han X Y, et al. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water[J]. Nature Communications, 2020, 11: 2531. |
63 | Sun Y Y, Shi J F, Wang Z, et al. Thylakoid membrane-inspired capsules with fortified cofactor shuttling for enzyme-photocoupled catalysis[J]. Journal of the American Chemical Society, 2022, 144(9): 4168-4177. |
64 | Xu M Y, Tremblay P L, Jiang L L, et al. Stimulating bioplastic production with light energy by coupling Ralstonia eutropha with the photocatalyst graphitic carbon nitride[J]. Green Chemistry, 2019, 21(9): 2392-2400. |
65 | Liu Y F, Cheng Y, Zhang H, et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy[J]. Science Advances, 2020, 6(29): eabb2695. |
66 | Gonçalves L C P, Mansouri H R, PourMehdi S, et al. Boosting photobioredox catalysis by morpholine electron donors under aerobic conditions[J]. Catalysis Science & Technology, 2019, 9(10): 2682-2688. |
67 | Luo J Q, Song S Q, Zhang H, et al. Biocatalytic membrane: go far beyond enzyme immobilization[J]. Engineering in Life Sciences, 2020, 20(11): 441-450. |
68 | Kondaveeti S, Abu-Reesh I M, Mohanakrishna G, et al. Advanced routes of biological and bio-electrocatalytic carbon dioxide (CO2) mitigation toward carbon neutrality[J]. Frontiers in Energy Research, 2020, 8: 94. |
69 | Cestellos-Blanco S, Zhang H, Kim J M, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nature Catalysis, 2020, 3(3): 245-255. |
70 | Sahoo P C, Singh A, Kumar M, et al. Light augmented CO2 conversion by metal organic framework sensitized electroactive microbes[J]. Molecular Catalysis, 2021, 514: 111845. |
71 |
Liu G Y, Gao F, Zhang H W, et al. Biosynthetic CdS-Thiobacillus thioparus hybrid for solar-driven carbon dioxide fixation[J]. Nano Research, 2021, doi: 10.1007/S12274-021-3883-0 .
DOI |
72 | Wang X N, Niu M T, Fan J X, et al. Photoelectric bacteria enhance the in situ production of tetrodotoxin for antitumor therapy[J]. Nano Letters, 2021, 21(10): 4270-4279. |
73 | Kracke F, Vassilev I, Krömer J O. Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems[J]. Frontiers in Microbiology, 2015, 6: 575. |
74 | Filman D J, Marino S F, Ward J E, et al. Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire[J]. Communications Biology, 2019, 2: 219. |
75 | Krige A, Sjöblom M, Ramser K, et al. On-line Raman spectroscopic study of cytochromes’ redox state of biofilms in microbial fuel cells[J]. Molecules (Basel, Switzerland), 2019, 24(3): 646. |
76 | Liu S R, Yi X F, Wu X E, et al. Internalized carbon dots for enhanced extracellular electron transfer in the dark and light[J]. Small, 2020, 16(44): 2004194. |
77 | Huang S, Tang J, Liu X, et al. Fast light-driven biodecolorization by a Geobacter sulfurreducens-CdS biohybrid[J]. American Chemical Society Sustainable Chemistry & Engineering, 2019, 7(18): 15427-15433. |
78 | Su Y D, Cestellos-Blanco S, Kim J M, et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation[J]. Joule, 2020, 4(4): 800-811. |
79 | Jin S, Jeon Y, Jeon M S, et al. Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020552118. |
80 | Bae J Y, Song Y, Lee H, et al. Valorization of C1 gases to value-added chemicals using acetogenic biocatalysts[J]. Chemical Engineering Journal, 2022, 428: 131325. |
81 | Yang L B, Su Q S, Si B C, et al. Enhancing bioenergy production with carbon capture of microalgae by ultraviolet spectrum conversion via graphene oxide quantum dots[J]. Chemical Engineering Journal, 2022, 429: 132230. |
82 | Qi R L, Zhao H, Zhou X, et al. In situ synthesis of photoactive polymers on a living cell surface via bio-palladium catalysis for modulating biological functions[J]. Angewandte Chemie International Edition, 2021, 60(11): 5759-5765. |
83 | Chen S, Shi N B, Huang M, et al. MoS2 nanosheets-cyanobacteria interaction: reprogrammed carbon and nitrogen metabolism[J]. ACS Nano, 2021, 15(10): 16344-16356. |
84 | Kornienko N, Sakimoto K K, Herlihy D M, et al. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11750-11755. |
85 | Wang B, Xiao K M, Jiang Z F, et al. Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures[J]. Energy & Environmental Science, 2019, 12(7): 2185-2191. |
86 | Zhang R T, He Y, Yi J, et al. Proteomic and metabolic elucidation of solar-powered biomanufacturing by bio-abiotic hybrid system[J]. Chem, 2020, 6(1): 234-249. |
87 | Fu Q, Xiao S, Li Z, et al. Hybrid solar-to-methane conversion system with a Faradaic efficiency of up to 96%[J]. Nano Energy, 2018, 53: 232-239. |
88 | Pan Q, Tian X C, Li J P, et al. Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems[J]. Applied Energy, 2021, 292: 116885. |
89 | Yang N, Tian Y, Zhang M, et al. Photocatalyst-enzyme hybrid systems for light-driven biotransformation[J]. Biotechnology Advances, 2022, 54: 107808. |
90 | Honda Y, Hagiwara H, Ida S, et al. Application to photocatalytic H2 production of a whole-cell reaction by recombinant Escherichia coli cells expressing [FeFe]-hydrogenase and maturases genes[J]. Angewandte Chemie International Edition, 2016, 55(28): 8045-8048. |
91 | Honda Y, Watanabe M, Hagiwara H, et al. Inorganic/whole-cell biohybrid photocatalyst for highly efficient hydrogen production from water[J]. Applied Catalysis B: Environmental, 2017, 210: 400-406. |
92 | Wei W, Sun P Q, Li Z, et al. A surface-display biohybrid approach to light-driven hydrogen production in air[J]. Science Advances, 2018, 4(2): eaap9253. |
93 | Tremblay P L, Xu M Y, Chen Y M, et al. Nonmetallic abiotic-biological hybrid photocatalyst for visible water splitting and carbon dioxide reduction[J]. iScience, 2020, 23(1): 100784. |
94 | Yishai O, Lindner S N, Gonzalez de la Cruz J, et al. The formate bio-economy[J]. Current Opinion in Chemical Biology, 2016, 35: 1-9. |
95 | Chen X, Cao Y, Li F, et al. Enzyme-assisted microbial electrosynthesis of poly(3-hydroxybutyrate) via CO2 bioreduction by engineered Ralstonia eutropha [J]. American Chemical Society Catalysis, 2018, 8(5): 4429-4437. |
96 | Zhang H, Liu H, Tian Z Q, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nature Nanotechnology, 2018, 13(10): 900-905. |
97 | Ding Y C, Bertram J R, Eckert C, et al. Nanorg microbial factories: light-driven renewable biochemical synthesis using quantum dot-bacteria nanobiohybrids[J]. Journal of the American Chemical Society, 2019, 141(26): 10272-10282. |
98 | Luo B F, Wang Y Z, Li D, et al. A periplasmic photosensitized biohybrid system for solar hydrogen production[J]. Advanced Energy Materials, 2021, 11(19): 2100256. |
99 | Kornienko N, Zhang J Z, Sakimoto K K, et al. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis[J]. Nature Nanotechnology, 2018, 13(10): 890-899. |
100 | Cestellos-Blanco S, Kim J M, Watanabe N G, et al. Molecular insights and future frontiers in cell photosensitization for solar-driven CO2 conversion[J]. iScience, 2021, 24(9): 102952. |
101 | Wang Q, Pornrungroj C, Linley S, et al. Strategies to improve light utilization in solar fuel synthesis[J]. Nature Energy, 2022, 7(1): 13-24. |
102 | Krisnawati D I, Hsu P H, Lin Y H, et al. The use of the ROS scavenger cysteine as a surface ligand of metal nanoclusters and its bactericidal elimination effect[J]. Applied Sciences, 2021, 11(9): 4095. |
103 | Contini C, Schneemilch M, Gaisford S, et al. Nanoparticle-membrane interactions[J]. Journal of Experimental Nanoscience, 2018, 13(1): 62-81. |
104 | Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions[J]. Small, 2010, 6(1): 12-21. |
105 | Guo J L, Suástegui M, Sakimoto K K, et al. Light-driven fine chemical production in yeast biohybrids[J]. Science, 2018, 362(6416): 813-816. |
106 | Choi Y, Lee S Y. Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages[J]. Nature Reviews Chemistry, 2020, 4(12): 638-656. |
107 | Cui Y H, Wu J H, Wei W, et al. Intracellular hybrid biosystem in a protozoan to trigger visible-light-driven photocatalysis[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 19846-19854. |
108 | Zhu T T, Tian L J, Yu S S, et al. Roles of cation efflux pump in biomineralization of cadmium into quantum dots in Escherichia coli [J]. Journal of Hazardous Materials, 2021, 412: 125248. |
109 | Hou T F, Liang J, Wang L, et al. Cd1- x Zn x S biomineralized by engineered bacterium for efficient photocatalytic hydrogen production[J]. Materials Today Energy, 2021, 22: 100869. |
110 | Wang X Y, Pu J H, An B L, et al. Programming cells for dynamic assembly of inorganic nano-objects with spatiotemporal control[J]. Advanced Materials, 2018, 30(16): 1705968. |
111 | Wang X Y, Zhang J C, Li K, et al. Photocatalyst-mineralized biofilms as living bio-abiotic interfaces for single enzyme to whole-cell photocatalytic applications[J]. Science Advances, 2022, 8(18): eabm7665. |
112 | Suastegui M, Matthiesen J E, Carraher J M, et al. Combining metabolic engineering and electrocatalysis: application to the production of polyamides from sugar[J]. Angewandte Chemie International Edition, 2016, 55(7): 2368-2373. |
113 | Lu A H, Li Y, Jin S, et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis[J]. Nature Communications, 2012, 3: 768. |
114 | Weliwatte N S, Minteer S D. Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape[J]. Joule, 2021, 5(10): 2564-2592. |
115 | Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield[J]. Annual Review of Plant Biology, 2010, 61: 235-261. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[3] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[4] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[5] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[6] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[7] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[8] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[9] | 胡阳, 孙彦. 酶分子的自驱动及其介导的微纳马达[J]. 化工学报, 2023, 74(1): 116-132. |
[10] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[11] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[12] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[13] | 安绍杰, 许洪峰, 李思, 许远航, 李佳锡. 利用分子机器的组装与分解构建pH敏感性谷胱甘肽过氧化物人工酶[J]. 化工学报, 2022, 73(8): 3669-3678. |
[14] | 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶Ⅱ催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211. |
[15] | 李淼, 赵虹, 姜标, 陈思远, 闫龙. 煤制乙炔关键中间体BaC2合成的热力学分析[J]. 化工学报, 2022, 73(5): 1908-1919. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||