化工学报 ›› 2022, Vol. 73 ›› Issue (9): 3861-3869.DOI: 10.11949/0438-1157.20220524
收稿日期:
2022-04-12
修回日期:
2022-06-21
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
王军锋
作者简介:
苏巧玲(1997—),女,硕士研究生,sql1208rosalind@163.com
基金资助:
Qiaoling SU(), Junfeng WANG(), Wei ZHANG, Shuiqing ZHAN, Tianyi WU
Received:
2022-04-12
Revised:
2022-06-21
Online:
2022-09-05
Published:
2022-10-09
Contact:
Junfeng WANG
摘要:
为探讨电场作用下气泡在低电导率工质中的极化运动特性,采用高速数码摄像技术对气泡在正庚烷溶液中的生长和分散过程进行了可视化研究,并结合无量纲数分析了不同气体流量和施加电压下的气泡演变特征以及极化力主导的气泡运动规律。结果表明,增大电场强度可导致气泡生长周期缩短,气泡尺寸显著减小,产生频率加快。在低电场强度下,气泡运动主要表现为流体动力学特性;而在强电场作用下,气泡首先受极化力主导而表现为电流体动力学特性,其直线轨迹高度随BoE增大而增大。但随着电场强度在竖直方向上的衰减以及液相阻力影响,气泡运动速度不断减小;当气泡脱离极化力主导区域后,其运动再次表现为流体动力学特性,受尾迹诱导和气泡间相互作用影响,气泡在竖直方向上沿毛细管轴向四周扩散。
中图分类号:
苏巧玲, 王军锋, 张伟, 詹水清, 吴天一. 低电导率工质中气泡的极化运动实验研究[J]. 化工学报, 2022, 73(9): 3861-3869.
Qiaoling SU, Junfeng WANG, Wei ZHANG, Shuiqing ZHAN, Tianyi WU. Experimental study on polarization motion characteristics of bubbles in a low conductivity working medium[J]. CIESC Journal, 2022, 73(9): 3861-3869.
工质 | 密度/(kg/m3) | 电导率/ (S/m) | 相对介电常数 | 表面张力/ (N/m) | 动力黏度/(Pa·s) |
---|---|---|---|---|---|
正庚烷 | 684 | <10-13 | 1.924 | 20.35×10-3 | 40.9×10-5 |
空气 | 1.205 | <10-15 | 1 | — | 18.4×10-6 |
表1 气液两相物性参数
Table 1 Physical parameters of phases
工质 | 密度/(kg/m3) | 电导率/ (S/m) | 相对介电常数 | 表面张力/ (N/m) | 动力黏度/(Pa·s) |
---|---|---|---|---|---|
正庚烷 | 684 | <10-13 | 1.924 | 20.35×10-3 | 40.9×10-5 |
空气 | 1.205 | <10-15 | 1 | — | 18.4×10-6 |
1 | Calgaroto S, Azevedo A, Rubio J. Flotation of quartz particles assisted by nanobubbles[J]. International Journal of Mineral Processing, 2015, 137: 64-70. |
2 | Huang J, Saito T. Influences of gas-liquid interface contamination on bubble motions, bubble wakes, and instantaneous mass transfer[J]. Chemical Engineering Science, 2017, 157: 182-199. |
3 | Li P, Ma Y, Zhu D Z. Mass transfer of gas bubbles rising in stagnant water[J]. Journal of Environmental Engineering, 2020, 146(8): 04020084. |
4 | Mohseni E, Kalayathine J J, Reinecke S F, et al. Dynamics of bubble formation at micro-orifices under constant gas flow conditions[J]. International Journal of Multiphase Flow, 2020, 132: 103407. |
5 | Qi Y, Masuk A U M, Ni R. Towards a model of bubble breakup in turbulence through experimental constraints[J]. International Journal of Multiphase Flow, 2020, 132: 103397. |
6 | Tang K, Gomez A. On the structure of an electrostatic spray of monodisperse droplets[J]. Physics of Fluids, 1994, 6(7): 2317-2332. |
7 | 何璐铭, 辛忠, 高文莉, 等. 静电纺丝法制备高活性多孔Ni/SiO2甲烷化催化剂[J]. 化工学报, 2020, 71(11): 5007-5015. |
He L M, Xin Z, Gao W L, et al. Highly efficient porous Ni/SiO2 catalysts prepared by electrospinning method for CO methanation[J]. CIESC Journal, 2020, 71(11): 5007-5015. | |
8 | 盛磊, 李培钰, 牛宇超, 等. 微尺度过程强化的结晶颗粒制备研究进展[J]. 化工学报, 2021, 72(1): 143-157. |
Sheng L, Li P Y, Niu Y C, et al. Progresses in the preparation of micro-scale process-enhanced crystalline particles[J]. CIESC Journal, 2021, 72(1): 143-157. | |
9 | Chubb L W. Improvements relating to methods and apparatus for heating liquids: UK100796[P]. 1916. |
10 | Kweon Y C, Kim M H. Experimental study on nucleate boiling enhancement and bubble dynamic behavior in saturated pool boiling using a nonuniform DC electric field[J]. International Journal of Multiphase Flow, 2000, 26(8): 1351-1368. |
11 | Kweon Y C, Kim M H, Cho H J, et al. Study on the deformation and departure of a bubble attached to a wall in DC/AC electric fields[J]. International Journal of Multiphase Flow, 1998, 24(1): 145-162. |
12 | Ogata S, Tan K, Nishijima K, et al. Development of improved bubble disruption and dispersion technique by an applied electric field method[J]. AIChE Journal, 1985, 31(1): 62-69. |
13 | Di Marco P, Kurimoto R, Saccone G, et al. Bubble shape under the action of electric forces[J]. Experimental Thermal and Fluid Science, 2013, 49: 160-168. |
14 | Di Marco P, Grassi W, Memoli G, et al. Influence of electric field on single gas-bubble growth and detachment in microgravity[J]. International Journal of Multiphase Flow, 2003, 29(4): 559-578. |
15 | Di Marco P. The use of electric force as a replacement of buoyancy in two-phase flow[J]. Microgravity Science and Technology, 2012, 24(3): 215-228. |
16 | Diao Y H, Guo L, Liu Y, et al. Electric field effect on the bubble behavior and enhanced heat-transfer characteristic of a surface with rectangular microgrooves[J]. International Journal of Heat and Mass Transfer, 2014, 78: 371-379. |
17 | Andalib S, Hokmabad B V, Esmaeilzadeh E. Study of a single coarse bubble behavior in the presence of DC electric field[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436: 604-617. |
18 | Gao M, Cheng P, Quan X. An experimental investigation on effects of an electric field on bubble growth on a small heater in pool boiling[J]. International Journal of Heat and Mass Transfer, 2013, 67: 984-991. |
19 | Li D, Wang T, Chen S, et al. Experimental investigation on droplet deformation and breakup under uniform DC electric field[J]. Microgravity Science and Technology, 2020, 32(5): 837-845. |
20 | 杨侠, 杨清, 吴艳阳, 等. 电场作用下氮气泡行为的数值模拟和实验研究[J]. 化工学报, 2013, 64(11): 3933-3939. |
Yang X, Yang Q, Wu Y Y, et al. Numerical simulation and experimental study on cold air bubbles behavior by electrohydrodynamics effect[J]. CIESC Journal, 2013, 64 (11): 3933-3939. | |
21 | Talaat M, Essa M A. Effect of electrohydrodynamic stresses in dielectric liquid: simulation study with the aid of single artificial air bubble using level set-volume of fluid method[J]. IET Generation, Transmission & Distribution, 2019, 13(20): 4694-4701. |
22 | 王悦柔, 王军锋, 刘海龙. 电场作用下气泡上升行为特性的数值计算研究[J]. 力学学报, 2020, 52(1): 31-39. |
Wang Y R, Wang J F, Liu H L. Numerical simulation on bubble rising behaviors under electric field[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 31-39. | |
23 | Fouras A, Lo Jacono D, Nguyen C V, et al. Volumetric correlation PIV: a new technique for 3D velocity vector field measurement[J]. Experiments in Fluids, 2009, 47(4): 569-577. |
24 | Crimaldi J P. Planar laser induced fluorescence in aqueous flows[J]. Experiments in Fluids, 2008, 44(6): 851-863. |
25 | Wang D, Wang J, Wang X, et al. Experimental investigation on the deformation and breakup of charged droplets in dielectric liquid medium[J]. International Journal of Multiphase Flow, 2019, 114: 39-49. |
26 | Zhang W, Wang J, Li B, et al. EHD effects on periodic bubble formation and coalescence in ethanol under non-uniform electric field[J]. Chemical Engineering Science, 2020, 215: 115451. |
27 | Zhang W, Wang J, Hu W, et al. Enhancement of electric field on bubble dispersion characteristics in leaky-dielectric liquid medium[J]. International Journal of Multiphase Flow, 2021, 142: 103743. |
28 | Shin W T, Yiacoumi S, Tsouris C. Experiments on electrostatic dispersion of air in water[J]. Industrial & Engineering Chemistry Research, 1997, 36(9): 3647-3655. |
29 | Landau L D, Bell J S, Kearsley M J, et al. Electrodynamics of Continuous Media[M]. Amsterdam: Elsevier, 2013. |
30 | 彭耀, 陈凤, 宋耀祖, 等. 物性对电场下单气泡行为的影响[J]. 工程热物理学报, 2008, 29(10): 1762-1764. |
Peng Y, Chen F, Song Y Z, et al. The property influences on bubble behavior under electric fields[J]. Journal of Engineering Thermophysics, 2008, 29 (10): 1762-1764. | |
31 | Oguz H N, Prosperetti A. Dynamics of bubble growth and detachment from a needle[J]. Journal of Fluid Mechanics, 1993, 257: 111-145. |
32 | Muilwijk C, van den Akker H E A. Experimental investigation on the bubble formation from needles with and without liquid co-flow[J]. Chemical Engineering Science, 2019, 202: 318-335. |
33 | Cano-Lozano J C, Martinez-Bazan C, Magnaudet J, et al. Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability[J]. Physical Review Fluids, 2016, 1(5): 053604. |
34 | 费洋, 庞明军. 球形气泡界面变化对尾涡性质和尺寸的影响[J]. 化工学报, 2017, 68(9): 3409-3419. |
Fei Y, Pang M J. Influence of interface change for spherical bubble on vortex characteristic and size[J]. CIESC Journal, 2017, 68 (9): 3409-3419. | |
35 | 顾英杰, 杨伟栋, 刘志远, 等. 气泡上升过程中尾流演变的 VOF 数值模拟[J]. 化工学报, 2021, 72(4): 1947-1955. |
Gu Y J, Yang W D, Liu Z Y, et al. Numerical simulation about evolution of bubble wake during bubble rising by VOF method[J]. CIESC Journal, 2021, 72 (4): 1947-1955. | |
36 | Clif R, Grace J R, Weber M E. Bubbles, Drops, and Particles[M]. New York: Academic Press, 1978. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[3] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[4] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[7] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[8] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[9] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[10] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[11] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[12] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
[13] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
[14] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
[15] | 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||