化工学报 ›› 2022, Vol. 73 ›› Issue (9): 3851-3860.DOI: 10.11949/0438-1157.20220512
郎雪梅1,3(), 姚柳眉1, 樊栓狮1, 李刚1, 王燕鸿1,2(
)
收稿日期:
2022-04-08
修回日期:
2022-06-13
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
王燕鸿
作者简介:
郎雪梅(1968—),女,博士,副研究员,cexmlang@scut.edu.cn
基金资助:
Xuemei LANG1,3(), Liumei YAO1, Shuanshi FAN1, Gang LI1, Yanhong WANG1,2(
)
Received:
2022-04-08
Revised:
2022-06-13
Online:
2022-09-05
Published:
2022-10-09
Contact:
Yanhong WANG
摘要:
水合物储运(NGH)是近几年发展起来的天然气储运技术,已具备实现工业化的潜力。但水合物的生长是传质传热控制的反应,因此在放大实验中存在诸多不确定因素。针对该问题,对水合物反应器中多孔材料内甲烷水合物生成传热过程建立了基于化学反应动力学和多孔材料内传质传热的甲烷水合物生成传热数学模型,可用于计算反应器内水合物生成分布和热量分布,指导水合反应器的设计和优化。通过模拟与实验数据对比验证了该模型的可靠性,并对使用了不同热导率填料的水合反应过程进行数值模拟。结果显示,模拟值与实验值的绝对平均相对误差小于6%,生成传热模型准确性高;在水合反应过程中,热量传递是影响水合物生成速率的关键因素之一。导热不良时,易在水合物生成中心部分形成局部过热,对水合物生长造成热抑制。在进行水合物生成放大实验时,应特别注意反应器内部的热量控制。
中图分类号:
郎雪梅, 姚柳眉, 樊栓狮, 李刚, 王燕鸿. 多孔材料中甲烷水合物生成的传热数值模拟研究[J]. 化工学报, 2022, 73(9): 3851-3860.
Xuemei LANG, Liumei YAO, Shuanshi FAN, Gang LI, Yanhong WANG. Numerical simulation of methane hydrate formation and heat transfer in porous materials[J]. CIESC Journal, 2022, 73(9): 3851-3860.
编号 | 多孔材料 种类 | 工作压力/MPa | 壁面 温度/K | 孔隙率 | 热导率/ (W/(m·K)) |
---|---|---|---|---|---|
① | 聚氨酯泡沫PU | 7.70 | 273.15 | 0.9778 | 0.039 |
② | 泡沫铝AF | 8.39 | 273.15 | 0.7278 | 237.00 |
表1 模拟运行参数
Table 1 Operating parameters of the simulation
编号 | 多孔材料 种类 | 工作压力/MPa | 壁面 温度/K | 孔隙率 | 热导率/ (W/(m·K)) |
---|---|---|---|---|---|
① | 聚氨酯泡沫PU | 7.70 | 273.15 | 0.9778 | 0.039 |
② | 泡沫铝AF | 8.39 | 273.15 | 0.7278 | 237.00 |
1 | Exxonmobil. The outlook for energy: a view to 2040[R]. the United States: ExxonMobil, 2014. |
2 | He T B, Chong Z R, Zheng J J, et al. LNG cold energy utilization: prospects and challenges[J]. Energy, 2019, 170: 557-568. |
3 | 朱琳琳, 皇甫立霞, 郭开华. 液化天然气航运安全标准的现状及最新进展[J]. 化工学报, 2018, 69(S2): 1-8. |
Zhu L L, Huangfu L X, Guo K H, et al. Current status and recent progress of LNG navigation safety standards[J]. CIESC Journal, 2018, 69(S2): 1-8. | |
4 | Veluswamy H P, Wong A J H, Babu P, et al. Rapid methane hydrate formation to develop a cost effective large scale energy storage system[J]. Chemical Engineering Journal, 2016, 290: 161-173. |
5 | Fan S S, Wang Y, Wang Y H, et al. Design and optimization of offshore ship-based natural gas storage technologies in the South China Sea[J]. Energy Conversion and Management, 2021, 239: 114218. |
6 | 郎雪梅, 樊栓狮, 王燕鸿, 等. 笼型水合物为能源化工带来新机遇[J]. 化工进展, 2021, 40(9): 4703-4710. |
Lang X M, Fan S S, Wang Y H, et al. Opportunities for energy and chemical engineering through clathrate hydrates[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4703-4710. | |
7 | Deng Z X, Wang Y H, Yu C, et al. Promoting methane hydrate formation with expanded graphite additives: application to solidified natural gas storage[J]. Fuel, 2021, 299: 120867. |
8 | 裴俊华, 杨亮, 汪鑫, 等. 泡沫铜强化甲烷水合物生成动力学实验研究[J]. 化工学报, 2021, 72(11): 5751-5760. |
Pei J H, Yang L, Wang X, et al. Experimental study on kinetics of methane hydrate formation enhanced by copper foam[J]. CIESC Journal, 2021, 72(11): 5751-5760. | |
9 | Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases [M]. Florida: CRC Press, 2007. |
10 | Xie Y, Zheng T, Zhong J R, et al. Experimental research on self-preservation effect of methane hydrate in porous sediments[J]. Applied Energy, 2020, 268: 115008. |
11 | Wang S L, Xu J, Fan S S, et al. Atmospheric preservation of CH4 hydrate above ice point: a potential application for high-density natural gas storage under moderate conditions[J]. Fuel, 2021, 293: 120482. |
12 | Bhattacharjee G, Veluswamy H P, Kumar A, et al. Stability analysis of methane hydrates for gas storage application[J]. Chemical Engineering Journal, 2021, 415: 128927. |
13 | Kanda H. Economic study on natural gas transportation with natural gas hydrate (NGH) pellets[J]. International Gas Union World Gas Conference Papers, 2006, 4: 1990-2000. |
14 | Ke W, Svartaas T M, Chen D Y. A review of gas hydrate nucleation theories and growth models[J]. Journal of Natural Gas Science and Engineering, 2019, 61: 169-196. |
15 | Fan S S, Yang L, Lang X M, et al. Kinetics and thermal analysis of methane hydrate formation in aluminum foam[J]. Chemical Engineering Science, 2012, 82: 185-193. |
16 | 黄怡. 碳纳米管、聚氨酯泡沫和新型干水对甲烷水合物生成的强化作用[D]. 广州: 华南理工大学, 2016. |
Huang Y. Effects of MWCNT, PU foam and new dry water on methane hydrate formation[D]. Guangzhou: South China University of Technology, 2016. | |
17 | Esmaeilzadeh F, Zeighami M E, Kaljahi J F. 1-D mathematical modeling of hydrate decomposition in porous media by depressurization and thermal stimulation[J]. Journal of Porous Media, 2011, 14(1): 1-16. |
18 | Li P, Zhang X H, Lu X B. Three-dimensional Eulerian modeling of gas-liquid-solid flow with gas hydrate dissociation in a vertical pipe[J]. Chemical Engineering Science, 2019, 196: 145-165. |
19 | Song G C, Li Y X, Wang W C, et al. Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 32-43. |
20 | Neto E T. A mechanistic computational fluid dynamic CFD model to predict hydrate formation in offshore pipelines[C]//SPE Annual Technical Conference and Exhibition. Dubai, UAE: SPE, 2016: 184491. |
21 | Song R, Sun S Y, Liu J J, et al. Numerical modeling on hydrate formation and evaluating the influencing factors of its heterogeneity in core-scale sandy sediment[J]. Journal of Natural Gas Science and Engineering, 2021, 90: 103945. |
22 | Chou I M, Sharma A, Burruss R C, et al. Transformations in methane hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25): 13484-13487. |
23 | Kumar A, Veluswamy H P, Linga P, et al. Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: implications to energy storage[J]. Fuel, 2019, 236: 1505-1511. |
24 | Vysniauskas A, Bishnoi P R. A kinetic study of methane hydrate formation[J]. Chemical Engineering Science, 1983, 38(7): 1061-1072. |
25 | 郝天翔. 应用FLUENT数值模拟天然气水合物开采过程[D]. 长春: 吉林大学, 2015. |
Hao T X. Numerical simulation of exploiting gas hydrate processes based on FLUENT software[D]. Changchun: Jilin University, 2015. | |
26 | Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003. |
27 | Yin Z Y, Khurana M, Tan H K, et al. A review of gas hydrate growth kinetic models[J]. Chemical Engineering Journal, 2018, 342: 9-29. |
28 | Fluent A. ANSYS FLUENT 14.5 Theory Guide[M]. The United States: Canonsburg, 2012. |
29 | 孙长宇, 陈光进, 郭天民, 等. 甲烷水合物分解动力学[J]. 化工学报, 2002, 53(9): 899-903. |
Sun C Y, Chen G J, Guo T M, et al. Kinetics of methane hydrate decomposition[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(9): 899-903. | |
30 | 辛亚男, 张建文, 张淑珍, 等. 螺旋内槽管内天然气-水-表面活性剂体系的水合物生成动力学计算[J]. 化工学报, 2018, 69(6): 2463-2473. |
Xin Y N, Zhang J W, Zhang S Z, et al. Modelling hydrate formation kinetics of natural gas-water-surfactant system in internal spiral-grooved tube[J]. CIESC Journal, 2018, 69(6): 2463-2473. | |
31 | Kim H C, Bishnoi P R, Heidemann R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7): 1645-1653. |
32 | Ji C, Ahmadi G, Smith D H. Natural gas production from hydrate decomposition by depressurization[J]. Chemical Engineering Science, 2001, 56(20): 5801-5814. |
33 | Sun X F, Mohanty K K. Kinetic simulation of methane hydrate formation and dissociation in porous media[J]. Chemical Engineering Science, 2006, 61(11): 3476-3495. |
34 | Amyx J W, Bass D, Whiting R. Petroleum Reservoir Engineering: Physical Properties[M]. New York: McGraw-Hill, 1960. |
35 | Kleinberg R L, Flaum C, Griffin D D, et al. Deep sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B10): 2508. |
36 | Hinz D. A 4-phase flow model for methane production from an unconsolidated hydrate reservoir[D]. Illinois: Illinois Institute of Technology, 2019. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[8] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[9] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[10] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 328
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||