化工学报 ›› 2022, Vol. 73 ›› Issue (11): 4974-4986.DOI: 10.11949/0438-1157.20220761
收稿日期:
2022-05-30
修回日期:
2022-10-12
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
肖文德
作者简介:
迟子怡(1998—),女,博士研究生,jenny100@ sjtu.edu.cn
基金资助:
Ziyi CHI(), Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO()
Received:
2022-05-30
Revised:
2022-10-12
Online:
2022-11-05
Published:
2022-12-06
Contact:
Wende XIAO
摘要:
CO与亚硝酸甲酯(MN)氧化偶联制草酸二甲酯(DMO)是合成气制乙二醇过程的关键步骤,现有工业装置存在效率低的问题。采用包括副反应(生成碳酸二甲酯和甲酸甲酯)动力学的动力学模型和二维两相反应器模型,对CO氧化偶联的移热式固定床反应器进行建模,研究了换热方式及操作条件对反应器性能和安全性的影响。结果表明,以温度的二阶导数作为飞温的判据是灵敏和可靠的。与常规的逆流和恒温移热方式相比,并流移热使反应器形成更为均匀的温度分布,有利于提高反应器产能。增加入口MN含量会升高反应器MN转化率和热点温度;但是,由于CO、NO和反应物MN之间存在竞争吸附,增加入口CO和NO含量会导致MN转化率和热点温度降低,所以增加入口压力导致MN转化率降低。且热点温度对MN和NO的含量更为敏感,应严格控制入口MN和NO的含量。采用遗传算法进行反应器工况寻优,确定了最优的反应条件,可提高单台反应器对应的乙二醇(EG)年产能至12万吨。
中图分类号:
迟子怡, 刘成伟, 张欲凌, 李学刚, 肖文德. CO氧化偶联反应器模拟与优化[J]. 化工学报, 2022, 73(11): 4974-4986.
Ziyi CHI, Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO. Reactor simulation and optimization for CO oxidative coupling to dimethyl oxalate reactions[J]. CIESC Journal, 2022, 73(11): 4974-4986.
参数 | 表达式 |
---|---|
Der[ | |
ker[ | ker= ker,0+ kf RePr / Per |
kfs[ | kfsdp/ Dij = 2+1.1Sc1/3Re0.6 |
hfs[ | hfsdp/ kf = 2+1.1Pr1/3Re0.6 |
hw[ | hw= Nuwkf/dp, |
ho[ | |
hew[ | 对于并流和逆流: 对于恒温换热: |
表1 模型参数
Table 1 Parameters in two-dimensional heterogeneous model
参数 | 表达式 |
---|---|
Der[ | |
ker[ | ker= ker,0+ kf RePr / Per |
kfs[ | kfsdp/ Dij = 2+1.1Sc1/3Re0.6 |
hfs[ | hfsdp/ kf = 2+1.1Pr1/3Re0.6 |
hw[ | hw= Nuwkf/dp, |
ho[ | |
hew[ | 对于并流和逆流: 对于恒温换热: |
Ak | Ak,ref | Bk/(kJ/mol) |
---|---|---|
KCO· | 0.13 | -103.23 |
KNO· | 0.32 | -92.91 |
3.22 | -31.25 | |
KH· | 1.01 | -60.90 |
kDMO | 2.19 | -62.12 |
kDMC | 0.42 | -5.54 |
kMF | 0.24 | 49.13 |
表2 动力学参数
Table 2 Kinetic parameters
Ak | Ak,ref | Bk/(kJ/mol) |
---|---|---|
KCO· | 0.13 | -103.23 |
KNO· | 0.32 | -92.91 |
3.22 | -31.25 | |
KH· | 1.01 | -60.90 |
kDMO | 2.19 | -62.12 |
kDMC | 0.42 | -5.54 |
kMF | 0.24 | 49.13 |
Pin/kPa | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
450 | 90.20 | 95.70 | 3.41 | 0.88 | 158.04 | 159.74 | 2.92 |
500 | 85.64 | 96.43 | 2.95 | 0.62 | 152.60 | 137.08 | 2.79 |
550 | 80.43 | 96.93 | 2.62 | 0.45 | 148.23 | 120.79 | 2.64 |
600 | 75.08 | 97.28 | 2.37 | 0.35 | 145.11 | 108.30 | 2.47 |
650 | 69.90 | 97.54 | 2.17 | 0.28 | 143.00 | 98.34 | 2.31 |
表3 压力对反应器性能影响
Table 3 Effect of pressure on reactor performance
Pin/kPa | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
450 | 90.20 | 95.70 | 3.41 | 0.88 | 158.04 | 159.74 | 2.92 |
500 | 85.64 | 96.43 | 2.95 | 0.62 | 152.60 | 137.08 | 2.79 |
550 | 80.43 | 96.93 | 2.62 | 0.45 | 148.23 | 120.79 | 2.64 |
600 | 75.08 | 97.28 | 2.37 | 0.35 | 145.11 | 108.30 | 2.47 |
650 | 69.90 | 97.54 | 2.17 | 0.28 | 143.00 | 98.34 | 2.31 |
GHSV/h-1 | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
3000 | 69.90 | 97.54 | 2.17 | 0.28 | 143.00 | 98.34 | 2.31 |
3500 | 65.86 | 97.44 | 2.26 | 0.30 | 145.16 | 133.92 | 2.53 |
4000 | 62.61 | 97.29 | 2.38 | 0.34 | 147.62 | 177.03 | 2.75 |
4500 | 60.18 | 97.08 | 2.53 | 0.39 | 150.13 | 229.80 | 2.97 |
5000 | 58.65 | 96.77 | 2.75 | 0.48 | 152.82 | 296.35 | 3.20 |
表4 空速对反应器性能影响
Table 4 Effect of GHSV on reactor performance
GHSV/h-1 | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
3000 | 69.90 | 97.54 | 2.17 | 0.28 | 143.00 | 98.34 | 2.31 |
3500 | 65.86 | 97.44 | 2.26 | 0.30 | 145.16 | 133.92 | 2.53 |
4000 | 62.61 | 97.29 | 2.38 | 0.34 | 147.62 | 177.03 | 2.75 |
4500 | 60.18 | 97.08 | 2.53 | 0.39 | 150.13 | 229.80 | 2.97 |
5000 | 58.65 | 96.77 | 2.75 | 0.48 | 152.82 | 296.35 | 3.20 |
No. | yMN,in/% | yCO,in/% | yNO,in/% | Tin /℃ | Pin/kPa | GHSV/h-1 | wc/ (kg/s) | η | εb |
---|---|---|---|---|---|---|---|---|---|
1 | 12.57 | 40.00 | 7.94 | 130.55 | 535.32 | 3179.78 | 0.011 | 0.35 | 0.45 |
2 | 13.94 | 39.98 | 7.60 | 136.24 | 590.47 | 3744.12 | 0.013 | 0.25 | 0.50 |
3 | 13.79 | 40.00 | 5.29 | 137.32 | 505.30 | 4554.93 | 0.014 | 0.21 | 0.55 |
4 | 12.61 | 30.00 | 8.46 | 128.23 | 582.70 | 3375.64 | 0.013 | 0.38 | 0.45 |
5 | 12.63 | 30.00 | 5.70 | 126.36 | 578.14 | 3907.57 | 0.014 | 0.35 | 0.50 |
6 | 14.52 | 29.98 | 8.66 | 129.62 | 586.35 | 4999.46 | 0.020 | 0.36 | 0.55 |
表5 优化条件
Table 5 Optimized conditions
No. | yMN,in/% | yCO,in/% | yNO,in/% | Tin /℃ | Pin/kPa | GHSV/h-1 | wc/ (kg/s) | η | εb |
---|---|---|---|---|---|---|---|---|---|
1 | 12.57 | 40.00 | 7.94 | 130.55 | 535.32 | 3179.78 | 0.011 | 0.35 | 0.45 |
2 | 13.94 | 39.98 | 7.60 | 136.24 | 590.47 | 3744.12 | 0.013 | 0.25 | 0.50 |
3 | 13.79 | 40.00 | 5.29 | 137.32 | 505.30 | 4554.93 | 0.014 | 0.21 | 0.55 |
4 | 12.61 | 30.00 | 8.46 | 128.23 | 582.70 | 3375.64 | 0.013 | 0.38 | 0.45 |
5 | 12.63 | 30.00 | 5.70 | 126.36 | 578.14 | 3907.57 | 0.014 | 0.35 | 0.50 |
6 | 14.52 | 29.98 | 8.66 | 129.62 | 586.35 | 4999.46 | 0.020 | 0.36 | 0.55 |
No. | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
1 | 76.84 | 97.28 | 2.19 | 0.53 | 157.71 | 149.40 | 2.91 |
2 | 76.42 | 96.16 | 2.97 | 0.87 | 167.25 | 116.31 | 3.73 |
3 | 77.87 | 95.16 | 3.54 | 1.30 | 170.09 | 133.94 | 4.53 |
4 | 75.18 | 96.83 | 2.63 | 0.54 | 154.33 | 149.92 | 3.01 |
5 | 74.97 | 96.94 | 2.55 | 0.51 | 154.50 | 124.45 | 3.49 |
6 | 70.41 | 95.98 | 3.31 | 0.71 | 159.04 | 130.72 | 4.77 |
表6 优化结果
Table 6 Optimized results
No. | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
1 | 76.84 | 97.28 | 2.19 | 0.53 | 157.71 | 149.40 | 2.91 |
2 | 76.42 | 96.16 | 2.97 | 0.87 | 167.25 | 116.31 | 3.73 |
3 | 77.87 | 95.16 | 3.54 | 1.30 | 170.09 | 133.94 | 4.53 |
4 | 75.18 | 96.83 | 2.63 | 0.54 | 154.33 | 149.92 | 3.01 |
5 | 74.97 | 96.94 | 2.55 | 0.51 | 154.50 | 124.45 | 3.49 |
6 | 70.41 | 95.98 | 3.31 | 0.71 | 159.04 | 130.72 | 4.77 |
1 | Yue H R, Zhao Y J, Ma X B, et al. Ethylene glycol: properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41(11): 4218-4244. |
2 | 丁怡婷. 煤炭业结构更优底色更绿[N]. 人民日报, 2022-05-11. |
Ding Y T. Better structure and environmental protection of coal industry[N]. People's Daily, 2022-05-11. | |
3 | 张鑫. 2021年中国煤制乙二醇行业市场现状分析, 行业迎来增速迅猛阶段[EB/OL]. [2022-10-17]. . |
Zhang X. Analysis of the market status of China's coal-to-ethylene glycol industry in 2021, the industry will usher in a stage of rapid growth[EB/OL]. [2022-10-17]. . | |
4 | Wei R X, Yan C L, Yang A, et al. Improved process design and optimization of 200 kt/a ethylene glycol production using coal-based syngas[J]. Chemical Engineering Research and Design, 2018, 132: 551-563. |
5 | 刘秀芳, 计扬, 李伟, 等. 蛋壳型Pd/α-Al2O3催化剂的制备及活性[J]. 催化学报, 2009, 30(3): 213-217. |
Liu X F, Ji Y, Li W, et al. Preparation and catalytic activity of egg-shelled catalyst Pd/α-Al2O3 [J]. Chinese Journal of Catalysis, 2009, 30(3): 213-217. | |
6 | Zhuo G L, Jiang X Z. Catalytic decompostiton of methyl nitrite over supported palladium catalysts in vapor phase[J]. Reaction Kinetics and Catalysis Letters, 2002, 77: 219-226. |
7 | Li Z H, Wang W H, Yin D X, et al. Effect of alkyl nitrite decomposition on catalytic performance of CO coupling reaction over supported palladium catalyst[J]. Frontiers of Chemical Science and Engineering, 2012, 6(4): 410-414. |
8 | Zhai H Y, Wang S M, Chen D K, et al. Research on thermal risk and decomposition behavior of methyl nitrite[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2131-2136. |
9 | 梁旭, 苗杰, 赵立红, 等. 一氧化碳偶联合成草酸二甲酯催化剂中试研究[J].天然气化工(C1化学与化工), 2018, 43(6): 80-83. |
Liang X, Miao J, Zhao L H, et al. Pilot test of the catalysts for synthesis of dimethyl oxalate by carbon monoxide coupling[J]. Natural Gas Chemical Industry, 2018, 43(6): 80-83. | |
10 | 李绍芬. 反应工程[M]. 3版. 北京: 化学工业出版社, 2013. |
Li S F. Reaction Engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2013. | |
11 | Borio D O, Bucalá V, Orejas J A, et al. Cocurrently-cooled fixed-bed reactors: a simple approach to optimal cooling design[J]. AIChE Journal, 1989, 35(11): 1899-1902. |
12 | 徐艳, 马新宾, 许根慧. 草酸二乙酯合成反应器参数敏感性研究[J]. 石油化工, 2003, 32: 835-837. |
Xu Y, Ma X B, Xu G H. Study on parameter sensitivity of diethyl oxalate synthesis reactor[J]. Petrochemical Technology, 2003, 32: 835-837. | |
13 | 徐艳, 马新宾, 李振花. 壳式固定床草酸二乙酯合成反应器模拟分析[J]. 化学反应工程与工艺, 2008, 24(3): 204-210. |
Xu Y, Ma X B, Li Z H. Simulation analysis on tube-shell type fixed bed reactor for synthesis of diethyl oxalate in gaseous phase[J]. Chemical Reaction Engineering and Technology, 2008, 24(3): 204-210. | |
14 | 鲁文质. SDMO路线合成乙二醇的模拟研究[D]. 上海: 上海交通大学, 2006. |
Lu W Z. Simulation on ethylene glycol synthesis by super DMO-based technology[D]. Shanghai: Shanghai Jiao Tong University, 2006. | |
15 | 毛文发, 郑赛男, 骆念军, 等. 列管固定床反应器内CO氧化偶联制草酸二甲酯反应模拟及优化[J]. 化工学报, 2022, 73(1): 284-293. |
Mao W F, Zheng S N, Luo N J, et al. Simulation and optimization on oxidative coupling reaction of CO to dimethyl oxalate in a tubular fixed bed reactor[J]. CIESC Journal, 2022, 73(1): 284-293. | |
16 | Iordanidi A. Mathematical modeling of catalytic fixed bed reactors[D]. Enschede: University of Twente, 2002. |
17 | Chi Z Y, Yang L Q, Li X G, et al. CO oxidative coupling with nitrite to oxalate over palladium catalyst: a comprehensive kinetic modeling[J]. Chemical Engineering Journal, 2022, 446: 136656. |
18 | 唐先智. α-氧化铝载体的研制及其在CO偶联反应中的应用[D]. 上海: 上海交通大学, 2016. |
Tang X Z. Preparation of α-Al2O3 support and the application in CO coupling reaction[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
19 | 黄雄杰, 李学刚, 肖文德. CO偶联制备草酸二甲酯的动力学研究[J]. 天然气化工(C1化学与化工), 2019, 44(5): 37-40, 75. |
Huang X J, Li X G, Xiao W D. Kinetic study of CO coupling reaction to produce dimethyl oxalate[J]. Natural Gas Chemical Industry, 2019, 44(5): 37-40, 75. | |
20 | Zenner A, Fiaty K, Bellière-Baca V, et al. Effective heat transfers in packed bed: experimental and model investigation[J]. Chemical Engineering Science, 2019, 201: 424-436. |
21 | Wakao N, Kaguei S. Heat and Mass Transfer in Packed Beds[M]. New York: Gordon & Breach Science, 1982. |
22 | 高白薇. 管壳式换热器的计算与选型[J]. 安徽化工, 2017, 43(4): 83-85, 87. |
Gao B W. Calculation and selection of shell and tube heat exchanger[J]. Anhui Chemical Industry, 2017, 43(4): 83-85, 87. | |
23 | 陈敏恒, 丛德滋, 方图南, 等. 化工原理[M]. 3版. 北京: 化学工业出版社, 2006. |
Chen M H, Cong D Z, Fang T N, et al. Principles of Chemical Engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2006. | |
24 | 邵青楠, 迟子怡, 李学刚, 等. 铁钼法甲醇制甲醛催化动力学研究及反应器模拟[J]. 天然气化工(C1化学与化工), 2021, 46(5): 121-128. |
Shao Q N, Chi Z Y, Li X G, et al. Kinetic study and reactor simulation of methanol to formaldehyde over Fe-Mo catalysts[J]. Natural Gas Chemical Industry, 2021, 46(5): 121-128. | |
25 | Borio D O, Gatica J E, Porras J A. Wall-cooled fixed-bed reactors: parametric sensitivity as a design criterion[J]. AIChE Journal, 1989, 35(2): 287-292. |
26 | Kummer A, Varga T. What do we know already about reactor runaway? A review[J]. Process Safety and Environmental Protection, 2021, 147: 460-476. |
27 | Adler J, Enig J W. The critical conditions in thermal explosion theory with reactant consumption[J]. Combustion and Flame, 1964, 8(2): 97-103. |
28 | Ergun S. Fluid flow through packed columns[J]. Fluid Flow Through Packed Columns, 1952, 48: 89-94. |
29 | Partopour B, Dixon A G. Effect of particle shape on methanol partial oxidation in a fixed bed using CFD reactor modeling[J]. AIChE Journal, 2020, 66(5): e16904. |
30 | Liu X L, Qin B, Zhang Q F, et al. Optimizing catalyst supports at single catalyst pellet and packed bed reactor levels: a comparison study[J]. AlChE Journal, 2021, 67(8): e17163. |
31 | Zhang M H, Dong H, Geng Z F. A particle-resolved CFD model coupling reaction-diffusion inside fixed-bed reactor[J]. Advanced Powder Technology, 2019, 30(6): 1226-1238. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[6] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[7] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[8] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[11] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[12] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[13] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[14] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[15] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||