化工学报 ›› 2023, Vol. 74 ›› Issue (1): 29-44.DOI: 10.11949/0438-1157.20221120
收稿日期:
2022-08-08
修回日期:
2022-11-04
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
郭烈锦
作者简介:
王峰(1990—),男,博士研究生,f_wang@xjtu.edu.cn
基金资助:
Feng WANG(), Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO()
Received:
2022-08-08
Revised:
2022-11-04
Online:
2023-01-05
Published:
2023-03-20
Contact:
Liejin GUO
摘要:
光催化CO2还原制碳氢燃料技术由太阳能直接驱动,将CO2转化为可直接利用的化学品,是助力碳达峰、碳中和的变革性技术。该技术的高效、低成本运行受光吸收利用、光催化剂形貌结构、界面催化反应及传质等因素影响,其内部能质传输是多时空尺度、多物理场耦合的复杂过程,需要从理论和应用两方面结合多个学科展开系统研究。梳理了光催化CO2还原基本理论及国内外研究进展,并针对技术瓶颈从光吸收拓展与利用、光生载流子分离强化、氧化/还原半反应优化及传质强化四个优化策略指出了该技术发展方向,探讨了该技术全流程能量传递和物质转化之间的耦合匹配准则,为降低反应能耗、促进性能及产率提升甚至未来工业化大规模太阳能驱动CO2还原应用铺垫道路。
中图分类号:
王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44.
Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction[J]. CIESC Journal, 2023, 74(1): 29-44.
产物 | 反应 | 氧化还原电位(vs NHE)/V |
---|---|---|
O2 | H2O | +0.82 |
H2 | 2H++2e- | -0.41 |
CH4 | CO2+8H++8e- | -0.24 |
C2H6 | 2CO2+14H++14e- | -0.27 |
CO | CO2+2H++2e- | -0.51 |
CH3OH | CO2+6H++6e- | -0.39 |
C2H5OH | 2CO2+12H++12e- | -0.33 |
CH3CH2CH2OH | 3CO2+18H++18e- | -0.31 |
CH3CH(OH)CH3 | 3CO2+18H++18e- | -0.30 |
HCHO | CO2+4H++4e- | -0.55 |
CH3CHO | 2CO2+10H++10e- | -0.36 |
CH3CH2CHO | 3CO2+16H++16e- | -0.32 |
CH3COCH3 | 3CO2+16H++16e- | -0.31 |
HCOOH | CO2+2H++2e- | -0.58 |
CH3COOH | 2CO2+8H++8e- | -0.31 |
表1 CO2还原过程常见产物及其简化的氧化还原方程和pH=7下的氧化还原电位
Table 1 Common products of CO2 reduction and their simplified Redox equations and Redox potentials at pH=7
产物 | 反应 | 氧化还原电位(vs NHE)/V |
---|---|---|
O2 | H2O | +0.82 |
H2 | 2H++2e- | -0.41 |
CH4 | CO2+8H++8e- | -0.24 |
C2H6 | 2CO2+14H++14e- | -0.27 |
CO | CO2+2H++2e- | -0.51 |
CH3OH | CO2+6H++6e- | -0.39 |
C2H5OH | 2CO2+12H++12e- | -0.33 |
CH3CH2CH2OH | 3CO2+18H++18e- | -0.31 |
CH3CH(OH)CH3 | 3CO2+18H++18e- | -0.30 |
HCHO | CO2+4H++4e- | -0.55 |
CH3CHO | 2CO2+10H++10e- | -0.36 |
CH3CH2CHO | 3CO2+16H++16e- | -0.32 |
CH3COCH3 | 3CO2+16H++16e- | -0.31 |
HCOOH | CO2+2H++2e- | -0.58 |
CH3COOH | 2CO2+8H++8e- | -0.31 |
体系 | 催化剂 | 反应体系 | 还原产物 | 氧化产物 | 产率 | 文献 |
---|---|---|---|---|---|---|
无牺牲剂体系 | In4SnS8 | H2O+CO2 | CH4 CO | O2 | 10.70 μl·h-1 9.39 μl·h-1 | [ |
Pt-TiO2 | H2O+CO2 | CH4 | 1361 μmol·g-1·h-1 | [ | ||
SnS2-C | H2O+CO2 | CH3CHO | 96.66 μmol·g-1·h-1 | [ | ||
CdS/Mn2O3/PAA | H2O+CO2 | HCOOH CH3CH2OH H2 | 1392.3 μmol·g-1·h-1 52.2 μmol·g-1·h-1 2766 μmol·g-1·h-1 | [ | ||
In2S3/Bi2MoO6 | H2O+CO2 | CO | 28.54 μmol·g-1·h-1 | [ | ||
CuIn5S8 | H2O+CO2 | CH4 | 8.7 μmol·g-1·h-1 | [ | ||
Cu2O | H2O+CO2 | CH3OH | 1.2 mol·g-1· h-1 | [ | ||
mCD/CN | H2O+CO2 | CH3OH | 13.9 μmol·g-1·h-1 | [ | ||
g-CN-MI-40 | H2O+CO2 | CH3OH | H2O2 | 4.18 mmol·g-1 | [ | |
Ag-MnO x /CaTiO3 | H2O+CO2 | CO | 11.8 μmol·h-1 | [ | ||
牺牲剂体系 | Ni-ZnS | K2CO3+K2SO3 | HCOOH | — | 427.5 μmol·g-1·h-1 | [ |
VZn-3D-ZnIn2S4 | H2O+TEOA | CO | — | 276.7 μmol·g-1·h-1 | [ | |
CdIn2S4/Co3O4 | H2O+TEOA+Co | CO | — | 5300 μmol·g-1·h-1 | [ | |
O-ZnIn2S4 | H2O+TEOA+CH3CN+Co | CO | — | 1680 μmol·g-1·h-1 | [ | |
CdS/TiO2 | H2O+NaHCO3+HCl | CH4 | — | 11.9 mmol·m-2·h-1 | [ | |
CdS/NH2-UiO-66 | H2O+TEOA | CO | — | 87 μmol·g-1·h-1 | [ | |
COF-5/CoAl-LDH | H2O+ acetonitrile | CO | — | 53.08 μmol·g-1·h-1 | [ | |
Cu/Cd0.5Zn0.5S | TEOA+KHCO3(aq) | C2+ | — | 6.54 μmol·h-1 | [ |
表2 近年来光催化CO2还原代表性工作
Table 2 Representative work of photocatalytic CO2 reduction in recent years
体系 | 催化剂 | 反应体系 | 还原产物 | 氧化产物 | 产率 | 文献 |
---|---|---|---|---|---|---|
无牺牲剂体系 | In4SnS8 | H2O+CO2 | CH4 CO | O2 | 10.70 μl·h-1 9.39 μl·h-1 | [ |
Pt-TiO2 | H2O+CO2 | CH4 | 1361 μmol·g-1·h-1 | [ | ||
SnS2-C | H2O+CO2 | CH3CHO | 96.66 μmol·g-1·h-1 | [ | ||
CdS/Mn2O3/PAA | H2O+CO2 | HCOOH CH3CH2OH H2 | 1392.3 μmol·g-1·h-1 52.2 μmol·g-1·h-1 2766 μmol·g-1·h-1 | [ | ||
In2S3/Bi2MoO6 | H2O+CO2 | CO | 28.54 μmol·g-1·h-1 | [ | ||
CuIn5S8 | H2O+CO2 | CH4 | 8.7 μmol·g-1·h-1 | [ | ||
Cu2O | H2O+CO2 | CH3OH | 1.2 mol·g-1· h-1 | [ | ||
mCD/CN | H2O+CO2 | CH3OH | 13.9 μmol·g-1·h-1 | [ | ||
g-CN-MI-40 | H2O+CO2 | CH3OH | H2O2 | 4.18 mmol·g-1 | [ | |
Ag-MnO x /CaTiO3 | H2O+CO2 | CO | 11.8 μmol·h-1 | [ | ||
牺牲剂体系 | Ni-ZnS | K2CO3+K2SO3 | HCOOH | — | 427.5 μmol·g-1·h-1 | [ |
VZn-3D-ZnIn2S4 | H2O+TEOA | CO | — | 276.7 μmol·g-1·h-1 | [ | |
CdIn2S4/Co3O4 | H2O+TEOA+Co | CO | — | 5300 μmol·g-1·h-1 | [ | |
O-ZnIn2S4 | H2O+TEOA+CH3CN+Co | CO | — | 1680 μmol·g-1·h-1 | [ | |
CdS/TiO2 | H2O+NaHCO3+HCl | CH4 | — | 11.9 mmol·m-2·h-1 | [ | |
CdS/NH2-UiO-66 | H2O+TEOA | CO | — | 87 μmol·g-1·h-1 | [ | |
COF-5/CoAl-LDH | H2O+ acetonitrile | CO | — | 53.08 μmol·g-1·h-1 | [ | |
Cu/Cd0.5Zn0.5S | TEOA+KHCO3(aq) | C2+ | — | 6.54 μmol·h-1 | [ |
1 | Kweku D, Bismark O, Maxwell A, et al. Greenhouse effect: greenhouse gases and their impact on global warming[J]. Journal of Scientific Research and Reports, 2018, 17(6): 1-9. |
2 | Guo Y, Guan W, Lei C, et al. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments [J]. Nature Communications, 2022, 13(1): 2761. |
3 | Ao H, Rohling E J, Zhang R, et al. Global warming-induced Asian hydrological climate transition across the Miocene-Pliocene boundary[J]. Nature Communications, 2021, 12: 6935. |
4 | Zhou N, Khanna N, Feng W, et al. Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050[J]. Nature Energy, 2018, 3(11): 978-984. |
5 | Guo Y, de Vasconcelos L S, Manohar N, et al. Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification [J]. Angewandte Chemie, 2022, 134(3): e202114074. |
6 | Chen Y B, Liu Y, Wang F, et al. Toward practical photoelectrochemical water splitting and CO2 reduction using earth-abundant materials[J]. Journal of Energy Chemistry, 2021, 61: 469-488. |
7 | Guo L J, Chen Y B, Su J Z, et al. Obstacles of solar-powered photocatalytic water splitting for hydrogen production: a perspective from energy flow and mass flow[J]. Energy, 2019, 172: 1079-1086. |
8 | 戚新刚, 路利波, 陈渝楠, 等. 造纸黑液超临界水气化制氢与高附加值化学品回收研究进展[J]. 化工学报, 2022, 73(8): 3338-3354. |
Qi X G, Lu L B, Chen Y N, et al. Review of black liquor supercritical water gasification for hydrogen production with high value-added chemicals recovery[J]. CIESC Journal, 2022, 73(8): 3338-3354. | |
9 | 欧阳述昕, 王文中. CO2绿色转化[J]. 无机材料学报, 2022, 37(1): 1-2. |
Ouyang S X, Wang W Z. Green conversion of CO2 [J]. Journal of Inorganic Materials, 2022, 37(1): 1-2. | |
10 | Liu Y, Wang F, Jiao Z H, et al. Photochemical systems for solar-to-fuel production[J]. Electrochemical Energy Reviews, 2022, 5(3): 1-41. |
11 | Bushuyev O S, de Luna P, Dinh C T, et al. What should we make with CO2 and how can we make it?[J]. Joule, 2018, 2(5): 825-832. |
12 | Bie C B, Zhu B C, Xu F Y, et al. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction[J]. Advanced Materials, 2019, 31(42): 1902868. |
13 | Li Y, Li B, Zhang D, et al. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity[J]. ACS Nano, 2020, 14(8): 10552-10561. |
14 | Wang H P, Zhang L, Wang K F, et al. Enhanced photocatalytic CO2 reduction to methane over WO3·0.33H2O via Mo doping[J]. Applied Catalysis B: Environmental, 2019, 243: 771-779. |
15 | Tian F Y, Zhang H L, Liu S, et al. Visible-light-driven CO2 reduction to ethylene on CdS: enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating[J]. Applied Catalysis B: Environmental, 2021, 285: 119834. |
16 | Xu F H, Li Z Z, Zhu R L, et al. Narrow band-gapped perovskite oxysulfide for CO2 photoreduction towards ethane[J]. Applied Catalysis B: Environmental, 2022, 316: 121615. |
17 | Wu Y A, McNulty I, Liu C, et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol[J]. Nature Energy, 2019, 4(11): 957-968. |
18 | Li N X, Liu X C, Zhou J C, et al. Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2020, 399: 125782. |
19 | Wang Q, Warnan J, Rodríguez-Jiménez S, et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water[J]. Nature Energy, 2020, 5(9): 703-710. |
20 | Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
21 | Mao L H, Lu B R, Shi J W, et al. Rapid high-temperature hydrothermal post treatment on graphitic carbon nitride for enhanced photocatalytic H2 evolution[J]. Catalysis Today, 2023, 409: 94-102. |
22 | Halmann M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells[J]. Nature, 1978, 275(5676): 115-116. |
23 | Liang L, Li X D, Zhang J C, et al. Efficient infrared light induced CO2 reduction with nearly 100% CO selectivity enabled by metallic CoN porous atomic layers[J]. Nano Energy, 2020, 69: 104421. |
24 | Fu J W, Jiang K X, Qiu X Q, et al. Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today, 2020, 32: 222-243. |
25 | Zeng S, Kar P, Thakur U K, et al. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials[J]. Nanotechnology, 2018, 29(5): 052001. |
26 | Li K, An X Q, Park K H, et al. A critical review of CO2 photoconversion: catalysts and reactors[J]. Catalysis Today, 2014, 224: 3-12. |
27 | Wang Y, Shang X T, Shen J N, et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation[J]. Nature Communications, 2020, 11: 3043. |
28 | Tafreshi S S, Moshfegh A Z, de Leeuw N H. Mechanism of photocatalytic reduction of CO2 by Ag3PO4(111)/g-C3N4 nanocomposite: a first-principles study[J]. The Journal of Physical Chemistry C, 2019, 123(36): 22191-22201. |
29 | Chai Y, Chen Y M, Shen J N, et al. Distortion of the coordination structure and high symmetry of the crystal structure in In4SnS8 microflowers for enhancing visible-light photocatalytic CO2 reduction[J]. ACS Catalysis, 2021, 11(17): 11029-11039. |
30 | Wang W N, An W J, Ramalingam B, et al. Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals[J]. Journal of the American Chemical Society, 2012, 134(27): 11276-11281. |
31 | Shown I, Samireddi S, Chang Y C, et al. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light[J]. Nature Communications, 2018, 9: 169. |
32 | Kandy M M, Gaikar V G. Enhanced photocatalytic reduction of CO2 using CdS/Mn2O3 nanocomposite photocatalysts on porous anodic alumina support with solar concentrators[J]. Renewable Energy, 2019, 139: 915-923. |
33 | Yu B, Wu Y X, Meng F M, et al. Formation of hierarchical Bi2MoO6/In2S3 S-scheme heterojunction with rich oxygen vacancies for boosting photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2022, 429: 132456. |
34 | Li X D, Sun Y F, Xu J Q, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers[J]. Nature Energy, 2019, 4(8): 690-699. |
35 | Wang Y O, Liu X, Han X Y, et al. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water[J]. Nature Communications, 2020, 11: 2531. |
36 | Samanta S, Yadav R, Kumar A, et al. Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production[J]. Applied Catalysis B: Environmental, 2019, 259: 118054. |
37 | Soltani T, Yamamoto A, Singh S P, et al. Simultaneous formation of CO and H2O2 from CO2 and H2O with a Ag-MnO x /CaTiO3 photocatalyst[J]. ACS Applied Energy Materials, 2021, 4(7): 6500-6510. |
38 | Pang H, Meng X G, Song H, et al. Probing the role of nickel dopant in aqueous colloidal ZnS nanocrystals for efficient solar-driven CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 244: 1013-1020. |
39 | He Y Q, Rao H, Song K P, et al. 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction[J]. Advanced Functional Materials, 2019, 29(45): 1905153. |
40 | Huang L J, Li B F, Su B, et al. Fabrication of hierarchical Co3O4@CdIn2S4 p-n heterojunction photocatalysts for improved CO2 reduction with visible light[J]. Journal of Materials Chemistry A, 2020, 8(15): 7177-7183. |
41 | Pan B, Wu Y, Rhimi B, et al. Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction[J]. Journal of Energy Chemistry, 2021, 57: 1-9. |
42 | Low J, Dai B Z, Tong T, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst[J]. Advanced Materials, 2019, 31(5): 1807920. |
43 | Zhao H, Yang X, Xu R, et al. CdS/NH2-UiO-66 hybrid membrane reactors for the efficient photocatalytic conversion of CO2 [J]. Journal of Materials Chemistry A, 2018, 6(41): 20152-20160. |
44 | Qu S Y, Zhou M, Chen W, et al. COF-5/CoAl-LDH nanocomposite heterojunction for enhanced visible-light-driven CO2 reduction[J]. ChemSusChem, 2022, 15(7): e202200184. |
45 | Bai S J, Qiu H R, Song M M, et al. Porous fixed-bed photoreactor for boosting C—C coupling in photocatalytic CO2 reduction[J]. eScience, 2022, 2(4): 428-437. |
46 | Lo C C, Hung C H, Yuan C S, et al. Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor[J]. Solar Energy Materials and Solar Cells, 2007, 91(19): 1765-1774. |
47 | Xin C Y, Hu M C, Wang K, et al. Significant enhancement of photocatalytic reduction of CO2 with H2O over ZnO by the formation of basic zinc carbonate[J]. Langmuir, 2017, 33(27): 6667-6676. |
48 | Yu X X, Yang Z Z, Qiu B, et al. Eosin Y-functionalized conjugated organic polymers for visible-light-driven CO2 reduction with H2O to CO with high efficiency[J]. Angewandte Chemie International Edition, 2019, 58(2): 632-636. |
49 | Bian J, Feng J N, Zhang Z Q, et al. Dimension-matched zinc phthalocyanine/BiVO4 ultrathin nanocomposites for CO2 reduction as efficient wide-visible-light-driven photocatalysts via a cascade charge transfer[J]. Angewandte Chemie International Edition, 2019, 58(32): 10873-10878. |
50 | Di T M, Zhu B C, Cheng B, et al. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance[J]. Journal of Catalysis, 2017, 352: 532-541. |
51 | Wang J C, Zhang L, Fang W X, et al. Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8631-8639. |
52 | Liang L, Li X D, Sun Y F, et al. Infrared light-driven CO2 overall splitting at room temperature[J]. Joule, 2018, 2(5): 1004-1016. |
53 | Jin J R, He T. Facile synthesis of Bi2S3 nanoribbons for photocatalytic reduction of CO2 into CH3OH[J]. Applied Surface Science, 2017, 394: 364-370. |
54 | Nishiyama H, Yamada T, Nakabayashi M, et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale[J]. Nature, 2021, 598(7880): 304-307. |
55 | Takata T, Jiang J Z, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature, 2020, 581(7809): 411-414. |
56 | Liang L, Lei F C, Gao S, et al. Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol[J]. Angewandte Chemie International Edition, 2015, 54(47): 13971-13974. |
57 | Liu Y, Yu F, Wang F, et al. Construction of Z-scheme In2S3-TiO2 for CO2 reduction under concentrated natural sunlight[J]. Chinese Journal of Structural Chemistry, 2022, 41(1): 2201034-2201039. |
58 | Low J, Yu J, Jaroniec M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. |
59 | Xu F Y, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nature Communications, 2020, 11(1): 4613. |
60 | Zhang L Y, Zhang J J, Yu H G, et al. Emerging S-scheme photocatalyst[J]. Advanced Materials, 2022, 34(11): e2107668. |
61 | Wang L, Zhao B H, Wang C H, et al. Thermally assisted photocatalytic conversion of CO2-H2O to C2H4 over carbon doped In2S3 nanosheets[J]. Journal of Materials Chemistry A, 2020, 8(20): 10175-10179. |
62 | Wang L B, Zang L L, Shen F T, et al. Preparation of Cu modified g-C3N4 nanorod bundles for efficiently photocatalytic CO2 reduction[J]. Journal of Colloid and Interface Science, 2022, 622: 336-346. |
63 | Shen M, Zhang L X, Shi J L. Defect engineering of photocatalysts towards elevated CO2 reduction performance[J]. ChemSusChem, 2021, 14(13): 2635-2654. |
64 | Gong S Q, Niu Y L, Teng X, et al. Visible light-driven, selective CO2 reduction in water by In-doped Mo2C based on defect engineering[J]. Applied Catalysis B: Environmental, 2022, 310: 121333. |
65 | Xu F Y, Meng K, Zhu B C, et al. Graphdiyne: a new photocatalytic CO2 reduction cocatalyst[J]. Advanced Functional Materials, 2019, 29(43): 1904256. |
66 | Dong C Y, Xing M Y, Zhang J L. Double-cocatalysts promote charge separation efficiency in CO2 photoreduction: spatial location matters[J]. Materials Horizons, 2016, 3(6): 608-612. |
67 | Wu H K, Li Y H, Qi M Y, et al. Enhanced photocatalytic CO2 reduction with suppressing H2 evolution via Pt cocatalyst and surface SiO2 coating[J]. Applied Catalysis B: Environmental, 2020, 278: 119267. |
68 | Jiang Z, Ding D, Wang L, et al. Interfacial effects of MnO x -loaded TiO2 with exposed {001} facets and its catalytic activity for the photoreduction of CO2 [J]. Catalysis Science & Technology, 2017, 7(14): 3065-3072. |
69 | Dong C Y, Hu S C, Xing M Y, et al. Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts Au and RuO2 [J]. Nanotechnology, 2018, 29(15): 154005. |
70 | Di J, Chen C, Zhu C, et al. Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction[J]. Nano Energy, 2021, 79: 105429. |
71 | Li K, Peng T Y, Ying Z H, et al. Ag-loading on brookite TiO2 quasi nanocubes with exposed {210} and {001} facets: activity and selectivity of CO2 photoreduction to CO/CH4 [J]. Applied Catalysis B: Environmental, 2016, 180: 130-138. |
72 | Chen Q, Mo W, Yang G, et al. Significantly enhanced photocatalytic CO2 reduction by surface amorphization of cocatalysts[J]. Small, 2021, 17(45): e2102105. |
73 | Yoshino S, Sato K, Yamaguchi Y, et al. Z-schematic CO2 reduction to CO through interparticle electron transfer between SrTiO3:Rh of a reducing photocatalyst and BiVO4 of a water oxidation photocatalyst under visible light[J]. ACS Applied Energy Materials, 2020, 3(10): 10001-10007. |
74 | Wagner A, Sahm C D, Reisner E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction[J]. Nature Catalysis, 2020, 3(10): 775-786. |
75 | Hao Y C, Chen L W, Li J N, et al. Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction[J]. Nature Communications, 2021, 12: 2682. |
76 | Song M M, Jiao Z H, Jing W H, et al. Revealing the nature of C—C coupling sites on a Cu surface for CO2 reduction[J]. The Journal of Physical Chemistry Letters, 2022, 13(20): 4434-4440. |
77 | Das R, Chakraborty S, Peter S C. Systematic assessment of solvent selection in photocatalytic CO2 reduction[J]. ACS Energy Letters, 2021, 6(9): 3270-3274. |
78 | Kuramochi Y, Kamiya M, Ishida H. Photocatalytic CO2 reduction in N, N-dimethylacetamide/water as an alternative solvent system[J]. Inorganic Chemistry, 2014, 53(7): 3326-3332. |
79 | Yu F, Wang C H, Ma H, et al. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2 [J]. Nanoscale, 2020, 12(13): 7000-7010. |
80 | Galli F, Compagnoni M, Vitali D, et al. CO2 photoreduction at high pressure to both gas and liquid products over titanium dioxide[J]. Applied Catalysis B: Environmental, 2017, 200: 386-391. |
81 | Khan A A, Tahir M. Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels[J]. Journal of CO2 Utilization, 2019, 29: 205-239. |
82 | Ola O, Maroto-Valer M M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24: 16-42. |
83 | Li Y, Li R Z, Li Z H, et al. Recent advances in photothermal CO x conversion[J]. Solar RRL, 2022, 6(10): 2200493. |
84 | Zhao L, Qi Y, Song L, et al. Solar-driven water-gas shift reaction over CuO x /Al2O3 with 1.1% of light-to-energy storage[J]. Angewandte Chemie International Edition, 2019, 58(23): 7708-7712. |
85 | Tong Y X, Song L Z, Ning S B, et al. Photocarriers-enhanced photothermocatalysis of water-gas shift reaction under H2-rich and low-temperature condition over CeO2/Cu1.5Mn1.5O4 catalyst[J]. Applied Catalysis B: Environmental, 2021, 298: 120551. |
86 | Ning S B, Sun Y H, Ouyang S X, et al. Solar light-induced injection of hot electrons and photocarriers for synergistically enhanced photothermocatalysis over Cu-Co/SrTiO3 catalyst towards boosting CO hydrogenation into C2—C4 hydrocarbons[J]. Applied Catalysis B: Environmental, 2022, 310: 121063. |
87 | 闫帅 杨海平, 陈应泉, 等. CO2光热催化还原研究进展[J]. 化工学报, 2022, 73(10): 4298-4310. |
Yan S, Yang H P, Chen Y Q, et al. Recent advances in photothermal catalysis of CO2 reduction[J]. CIESC Journal, 2022, 73(10): 4298-4310. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[3] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[4] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[5] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[6] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[7] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
[8] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
[9] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[10] | 钱宇, 陈耀熙, 史晓斐, 杨思宇. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110. |
[11] | 马荣, 孙杰, 李东辉, 魏进家. 基于Cu/TiO2/C-Wood复合材料的聚光太阳能驱动自漂浮高效海水汽化催化分解制氢体系[J]. 化工学报, 2022, 73(4): 1695-1703. |
[12] | 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825. |
[13] | 王洁冰, 高金彤, 徐震原. 基于不同类型溶液蒸气压特性的太阳能界面蒸发实验研究[J]. 化工学报, 2022, 73(2): 663-671. |
[14] | 王淋, 付乾, 肖帅, 李卓, 李俊, 张亮, 朱恂, 廖强. 高效可见光响应微生物/光电化学耦合人工光合作用系统[J]. 化工学报, 2022, 73(2): 887-893. |
[15] | 陈雪梅, 王彤, 高玉箔, 彭鼎程, 罗雨婷. 利用激光诱导石墨烯实现高效太阳能界面蒸发[J]. 化工学报, 2022, 73(12): 5648-5659. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 598
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 997
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||