化工学报 ›› 2023, Vol. 74 ›› Issue (5): 1965-1973.DOI: 10.11949/0438-1157.20230236
收稿日期:
2023-03-14
修回日期:
2023-05-10
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
刘丽艳
作者简介:
王泽栋(1997—),男,硕士研究生,wangzd1997@tju.edu.cn
基金资助:
Zedong WANG1(), Zhiping SHI1, Liyan LIU1,2(
)
Received:
2023-03-14
Revised:
2023-05-10
Online:
2023-05-05
Published:
2023-06-29
Contact:
Liyan LIU
摘要:
声流效应能够有效强化声反应器内的传质过程,大型声反应器中声流驱动力主要来源于声波非线性耗散。以大型壁面式声反应器作为研究对象,采用考虑气泡非均匀分布的非线性声学模型预测声场,耦合声体积力求解三维声流场分布,通过粒子图像测速技术验证模型准确性,研究了超声功率、反应器宽度和液位高度对声流效应的影响规律。结果表明,提高超声功率能够显著提升声流效果,但密集的空化气泡会产生强烈的耗散,导致空化能量的转化率降低;狭窄空间严重阻碍声流发展,反应器空间过于宽阔无益于扩大高流速区域,反而会降低整体的声流强化性能,变化曲线表明40 kHz、60 W驱动条件下能达到最优声流效果的最佳响应宽度和高度分别在200 mm和100 mm左右。
中图分类号:
王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor[J]. CIESC Journal, 2023, 74(5): 1965-1973.
物性参数 | 数值 |
---|---|
密度ρ/(kg/m3) | 998 |
声速c/(m/s) | 1500 |
动力黏度μ/(Pa·s) | 0.001 |
气泡平均半径R0/μm | 30[ |
气泡内平衡压力P0/Pa | 1.0135×105 |
液体表面张力系数σ/(N/m) | 7.28×10-2 |
气体的热扩散系数D/(m2/s) | 1.9×10-5 |
气体的比热容比γ | 1.327 |
表1 模拟参数设置
Table 1 Value of physical properties in simulation
物性参数 | 数值 |
---|---|
密度ρ/(kg/m3) | 998 |
声速c/(m/s) | 1500 |
动力黏度μ/(Pa·s) | 0.001 |
气泡平均半径R0/μm | 30[ |
气泡内平衡压力P0/Pa | 1.0135×105 |
液体表面张力系数σ/(N/m) | 7.28×10-2 |
气体的热扩散系数D/(m2/s) | 1.9×10-5 |
气体的比热容比γ | 1.327 |
图12 不同宽度条件下全场平均流速u¯和高流速区域占比φ随液位高度的变化曲线
Fig.12 The curve of the average velocity u¯ and the high velocity zone proportion φ with liquid level under different width conditions
图13 宽度为100 mm、液位高度为200 mm条件下的流场状态(左侧为绝对声压云图和体积力分布,右侧为流场云图和流线分布)
Fig.13 The acoustic streaming field under the condition of 100 mm width and 200 mm liquid level (the left side is the absolute sound pressure field and body force, and the right side is the acoustic streaming field and streamline)
1 | Thompson L H, Doraiswamy L K. Sonochemistry: science and engineering[J]. Industrial & Engineering Chemistry Research, 1999, 38(4): 1215-1249. |
2 | Riley N. Acoustic streaming[J]. Theoretical and Computational Fluid Dynamics, 1998, 10(1): 349-356. |
3 | Hihn J Y, Doche M L, Hallez L, et al. Sonoelectrochemistry: both a tool for investigating mechanisms and for accelerating processes[J]. The Electrochemical Society Interface, 2018, 27(3): 47-51. |
4 | Gogate P R, Sutkar V S, Pandit A B. Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems[J]. Chemical Engineering Journal, 2011, 166(3): 1066-1082. |
5 | Wu J R, Du G H. Acoustic streaming generated by a focused Gaussian beam and finite amplitude tonebursts[J]. Ultrasound in Medicine & Biology, 1993, 19(2): 167-176. |
6 | Louisnard O. A viable method to predict acoustic streaming in presence of cavitation[J]. Ultrasonics Sonochemistry, 2017, 35: 518-524. |
7 | Xu Z, Yasuda K, Koda S. Numerical simulation of liquid velocity distribution in a sonochemical reactor[J]. Ultrasonics Sonochemistry, 2013, 20(1): 452-459. |
8 | Louisnard O. A simple model of ultrasound propagation in a cavitating liquid (Ⅰ): Theory, nonlinear attenuation and traveling wave generation[J]. Ultrasonics Sonochemistry, 2012, 19(1): 56-65. |
9 | Tudela I, Sáez V, Esclapez M D, et al. Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review[J]. Ultrasonics Sonochemistry, 2014, 21(3): 909-919. |
10 | 吴文华, 翟薇, 胡海豹, 等. 液体材料超声处理过程中声场和流场的分布规律研究[J]. 物理学报, 2017, 66(19): 194303. |
Wu W H, Zhai W, Hu H B, et al. Acoustic field and convection pattern within liquid material during ultrasonic processing[J]. Acta Physica Sinica, 2017, 66(19): 194303. | |
11 | Trujillo F J. A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids (Ⅰ): Theory and validation at low acoustic pressure amplitudes[J]. Ultrasonics Sonochemistry, 2018, 47: 75-98. |
12 | Commander K W, Prosperetti A. Linear pressure waves in bubbly liquids: comparison between theory and experiments[J]. The Journal of the Acoustical Society of America, 1989, 85(2): 732-746. |
13 | Ma X J, Huang B, Wang G Y, et al. Experimental investigation of conical bubble structure and acoustic flow structure in ultrasonic field[J]. Ultrasonics Sonochemistry, 2017, 34: 164-172. |
14 | 陈伟中. 声空化泡对声传播的屏蔽特性[J]. 应用声学, 2018, 37(5): 675-679. |
Chen W Z. Cavitation bubbles screen the acoustic propagation[J]. Journal of Applied Acoustics, 2018, 37(5): 675-679. | |
15 | Chu J K, Tiong T J, Chong S, et al. Multi-frequency sonoreactor characterisation in the frequency domain using a semi-empirical bubbly liquid model[J]. Ultrasonics Sonochemistry, 2021, 80: 105818. |
16 | Yasui K, Tuziuti T, Iida Y. Dependence of the characteristics of bubbles on types of sonochemical reactors[J]. Ultrasonics Sonochemistry, 2005, 12(1/2): 43-51. |
17 | Liu R, Liu Y, Liu C Z. Development of an efficient CFD-simulation method to optimize the structure parameters of an airlift sonobioreactor[J]. Chemical Engineering Research and Design, 2013, 91(2): 211-220. |
18 | Riedel E, Liepe M, Scharf S. Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum[J]. Metals, 2020, 10(4): 476. |
19 | 许非石, 杨丽霞, 陈光文. 超声微反应器内气液传质过程的介尺度强化机制[J]. 化工学报, 2022, 73(6): 2552-2562. |
Xu F S, Yang L X, Chen G W. Mesoscale enhancement mechanism of gas-liquid mass transfer in ultrasonic microreactor[J]. CIESC Journal, 2022, 73(6): 2552-2562. | |
20 | 林伟翔, 苏港川, 陈强, 等. 基于超声技术的沉浸式换热器强化传热研究[J]. 化工学报, 2021, 72(8): 4055-4063. |
Lin W X, Su G C, Chen Q, et al. Research on heat transfer enhancement of immersed coil heat exchanger by ultrasonic technology[J]. CIESC Journal, 2021, 72(8): 4055-4063. | |
21 | Tang Q, Hu J H. Diversity of acoustic streaming in a rectangular acoustofluidic field[J]. Ultrasonics, 2015, 58: 27-34. |
22 | Tang Q, Hu J H, Qian S Z, et al. Eckart acoustic streaming in a heptagonal chamber by multiple acoustic transducers[J]. Microfluidics and Nanofluidics, 2017, 21(2): 28. |
23 | Červenka M, Bednařík M. Variety of acoustic streaming in 2D resonant channels[J]. Wave Motion, 2016, 66: 21-30. |
24 | Brotchie A, Grieser F, Ashokkumar M. Effect of power and frequency on bubble-size distributions in acoustic cavitation[J]. Physical Review Letters, 2009, 102(8): 084302. |
25 | Jamshidi R, Pohl B, Peuker U A, et al. Numerical investigation of sonochemical reactors considering the effect of inhomogeneous bubble clouds on ultrasonic wave propagation[J]. Chemical Engineering Journal, 2012, 189/190: 364-375. |
26 | Nightingale K R, Trahey G E. A finite element model for simulating acoustic streaming in cystic breast lesions with experimental validation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(1): 201-214. |
27 | Aanonsen S I, Barkve T, Tjo/tta J N, et al. Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[J]. The Journal of the Acoustical Society of America, 1984, 75(3): 749-768. |
28 | Westervelt P J. Acoustic radiation pressure[J]. The Journal of the Acoustical Society of America, 1957, 29(1): 26-29. |
29 | Yamamoto T, Kubo K, Komarov S V. Characterization of acoustic streaming in water and aluminum melt during ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2021, 71: 105381. |
30 | Wu W H, Zhai W, Zhang Y B, et al. A comparative study of flow induced by 1D, 2D and 3D ultrasounds[J]. Science China Technological Sciences, 2019, 62(7): 1224-1231. |
31 | Jacobsen F. Active and reactive sound intensity in a reverberant sound field[J]. Journal of Sound and Vibration, 1990, 143(2): 231-240. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[6] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[13] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[14] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[15] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 533
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 202
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||