化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2391-2403.DOI: 10.11949/0438-1157.20230300
收稿日期:
2023-03-27
修回日期:
2023-05-17
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
周云龙
作者简介:
刘起超(1991—),男,博士,讲师,lqcliuqichao@126.com
基金资助:
Qichao LIU(), Yunlong ZHOU(), Cong CHEN
Received:
2023-03-27
Revised:
2023-05-17
Online:
2023-06-05
Published:
2023-07-27
Contact:
Yunlong ZHOU
摘要:
起伏振动下气液两相流含气率的准确预测对漂浮核电站的安全稳定运行有重要意义。实验研究了不同振动和流动工况下垂直上升管气液两相流的含气率特性。结果表明,起伏振动对泡状流下的含气率影响比较明显,对弹状流、搅混流和环状流的影响较弱。整体来看,起伏振动导致泡状流的含气率增加,其他三种流型下的含气率减小。对静止管道内常用的含气率计算模型进行评价,发现现有含气率计算模型比较适用于起伏振动下含气率的计算,但对泡状流和弹状流下含气率的预测误差较大。考虑振动的影响,引入了液相Froude数,建立了考虑流型的含气率计算关系式,显著提高了起伏振动下含气率的预测准确度。
中图分类号:
刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403.
Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration[J]. CIESC Journal, 2023, 74(6): 2391-2403.
测量 参数 | 仪器 | 量程 | 精度 | 相对 不确定度/% |
---|---|---|---|---|
水流量 | 电磁流量计(DN15) | 0~4 m3/h | 0.5% | 1.17~10.52 |
电磁流量计(DN50) | 0~10 m3/h | 0.5% | ||
气流量 | 质量流量计(DN15) | 0~10 m3/h(标准工况) | 0.5% | 0.57~15.71 |
质量流量计(DN20) | 0~30 m3/h(标准工况) | 0.5% | ||
加速度 | 加速度传感器 | ±1 g | 0.5% | 0.07~16.02 |
含液量 | 量尺 | 3 m | 1 mm | 0.06~3.2 |
表1 实验仪器及不确定度
Table 1 Experimental instrument and uncertainty
测量 参数 | 仪器 | 量程 | 精度 | 相对 不确定度/% |
---|---|---|---|---|
水流量 | 电磁流量计(DN15) | 0~4 m3/h | 0.5% | 1.17~10.52 |
电磁流量计(DN50) | 0~10 m3/h | 0.5% | ||
气流量 | 质量流量计(DN15) | 0~10 m3/h(标准工况) | 0.5% | 0.57~15.71 |
质量流量计(DN20) | 0~30 m3/h(标准工况) | 0.5% | ||
加速度 | 加速度传感器 | ±1 g | 0.5% | 0.07~16.02 |
含液量 | 量尺 | 3 m | 1 mm | 0.06~3.2 |
模型 | 公式 |
---|---|
Armand[ | |
Massena[ | |
Nishino[ | |
Greskovich[ | |
Chisholm[ | |
Czop[ | |
Hajal[ |
表2 k-β模型
Table 2 k-β models
模型 | 公式 |
---|---|
Armand[ | |
Massena[ | |
Nishino[ | |
Greskovich[ | |
Chisholm[ | |
Czop[ | |
Hajal[ |
模型 | 滑移参数 |
---|---|
Lockhart[ | B1=0.28,B2=0.64,B3=0.36,B4=0.07 |
Fauske[ | B1=1,B2=1,B3=0.5,B4=0 |
Thom[ | B1=1,B2=1,B3=0.89,B4=0.18 |
Zivi[ | B1=1,B2=1,B3=0.67,B4=0 |
Turner[ | B1=1,B2=0.72,B3=0.4,B4=0.08 |
Baroczy[ | B1=1,B2=0.74,B3=0.65,B4=0.13 |
Smith[ | B2=1,B3=1,B4=0 |
Chisholm[ | |
Spedding[ | B1=2.22,B2=0.65,B3=0.65,B4=0 |
Chen[ | B1=0.18,B2=0.6,B3=0.33,B4=0.07 |
Hamersma[ | B1=0.26,B2=0.67,B3=0.33,B4=0 |
Petalaz[ |
表3 滑速比模型
Table 3 Slip ratio models
模型 | 滑移参数 |
---|---|
Lockhart[ | B1=0.28,B2=0.64,B3=0.36,B4=0.07 |
Fauske[ | B1=1,B2=1,B3=0.5,B4=0 |
Thom[ | B1=1,B2=1,B3=0.89,B4=0.18 |
Zivi[ | B1=1,B2=1,B3=0.67,B4=0 |
Turner[ | B1=1,B2=0.72,B3=0.4,B4=0.08 |
Baroczy[ | B1=1,B2=0.74,B3=0.65,B4=0.13 |
Smith[ | B2=1,B3=1,B4=0 |
Chisholm[ | |
Spedding[ | B1=2.22,B2=0.65,B3=0.65,B4=0 |
Chen[ | B1=0.18,B2=0.6,B3=0.33,B4=0.07 |
Hamersma[ | B1=0.26,B2=0.67,B3=0.33,B4=0 |
Petalaz[ |
模型 | 公式 |
---|---|
Nicklin[ | |
Hughmark[ | |
Gregory[ | |
Rouhani[ | 如果 如果 |
Bonnecaze[ | |
Dix[ | |
Mattar[ | |
Greskovich[ | |
Sun[ | |
Jowitt[ | |
Kokal[ | |
Bestion[ |
表4 漂移通量模型
Table 4 Drift flux models
模型 | 公式 |
---|---|
Nicklin[ | |
Hughmark[ | |
Gregory[ | |
Rouhani[ | 如果 如果 |
Bonnecaze[ | |
Dix[ | |
Mattar[ | |
Greskovich[ | |
Sun[ | |
Jowitt[ | |
Kokal[ | |
Bestion[ |
模型 | 公式 |
---|---|
Sterman[ | |
Flanigan[ | |
Neal[ | |
Walli[ | |
El-Boher[ | |
Huq[ | |
Graham[ | |
Cioncolini[ |
表5 经验公式模型
Table 5 Empirical formula models
模型 | 公式 |
---|---|
Sterman[ | |
Flanigan[ | |
Neal[ | |
Walli[ | |
El-Boher[ | |
Huq[ | |
Graham[ | |
Cioncolini[ |
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Armand[ | 15.0 | 21.2 | 8.6 | 9.4 | 11.9 |
Massena[ | 15.0 | 21.2 | 8.5 | 9.1 | 11.8 |
Nishino[ | 34.8 | 27.9 | 18.6 | 9.2 | 23.0 |
Greskovich[ | 15.6 | 27.5 | 10.3 | 10.7 | 13.7 |
Chisholm[ | 16.2 | 19.5 | 9.9 | 7.5 | 12.4 |
Czop[ | 37.0 | 59.3 | 16.4 | 11.4 | 26.3 |
Hajal[ | 11.5 | 27.3 | 8.8 | 7.6 | 11.4 |
表6 k-β模型预测的MARD
Table 6 The MARD of k-β models
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Armand[ | 15.0 | 21.2 | 8.6 | 9.4 | 11.9 |
Massena[ | 15.0 | 21.2 | 8.5 | 9.1 | 11.8 |
Nishino[ | 34.8 | 27.9 | 18.6 | 9.2 | 23.0 |
Greskovich[ | 15.6 | 27.5 | 10.3 | 10.7 | 13.7 |
Chisholm[ | 16.2 | 19.5 | 9.9 | 7.5 | 12.4 |
Czop[ | 37.0 | 59.3 | 16.4 | 11.4 | 26.3 |
Hajal[ | 11.5 | 27.3 | 8.8 | 7.6 | 11.4 |
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Lockhart[ | 37.7 | 21.8 | 24.0 | 13.1 | 26.2 |
Fauske[ | 89.3 | 92.1 | 75.5 | 52.7 | 78.1 |
Thom[ | 51.3 | 55.6 | 25.3 | 6.7 | 33.5 |
Zivi[ | 71.7 | 76.9 | 47.3 | 21.0 | 53.9 |
Turner[ | 80.5 | 80.3 | 67.8 | 50.8 | 70.5 |
Baroczy[ | 44.8 | 37.2 | 26.8 | 12.2 | 31.1 |
Smith[ | 18.6 | 17.5 | 11.1 | 7.4 | 13.4 |
Chisholm[ | 16.1 | 19.5 | 9.8 | 7.4 | 12.4 |
Spedding[ | 34.0 | 17.1 | 20.9 | 10.8 | 22.9 |
Chen[ | 18.1 | 18.2 | 12.2 | 7.8 | 13.9 |
Hamersma[ | 38.9 | 25.2 | 24.0 | 12.3 | 26.8 |
Petalaz[ | 42.0 | 181.0 | 15.9 | 23.6 | 42.5 |
表7 滑速比模型预测MARD
Table 7 The MARD of slip ratiomodels
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Lockhart[ | 37.7 | 21.8 | 24.0 | 13.1 | 26.2 |
Fauske[ | 89.3 | 92.1 | 75.5 | 52.7 | 78.1 |
Thom[ | 51.3 | 55.6 | 25.3 | 6.7 | 33.5 |
Zivi[ | 71.7 | 76.9 | 47.3 | 21.0 | 53.9 |
Turner[ | 80.5 | 80.3 | 67.8 | 50.8 | 70.5 |
Baroczy[ | 44.8 | 37.2 | 26.8 | 12.2 | 31.1 |
Smith[ | 18.6 | 17.5 | 11.1 | 7.4 | 13.4 |
Chisholm[ | 16.1 | 19.5 | 9.8 | 7.4 | 12.4 |
Spedding[ | 34.0 | 17.1 | 20.9 | 10.8 | 22.9 |
Chen[ | 18.1 | 18.2 | 12.2 | 7.8 | 13.9 |
Hamersma[ | 38.9 | 25.2 | 24.0 | 12.3 | 26.8 |
Petalaz[ | 42.0 | 181.0 | 15.9 | 23.6 | 42.5 |
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Nicklin[ | 21.0 | 20.5 | 11.1 | 10.1 | 14.8 |
Hughmark[ | 15.0 | 21.4 | 8.5 | 9.4 | 11.9 |
Gregory[ | 14.4 | 21.8 | 8.1 | 9.0 | 11.5 |
Rouhani[ | 19.0 | 20.9 | 10.1 | 9.6 | 13.8 |
Bonnecaze[ | 21.0 | 20.5 | 11.1 | 10.1 | 14.8 |
Dix[ | 41.0 | 19.2 | 22.3 | 17.1 | 26.6 |
Mattar[ | 20.9 | 20.5 | 11.0 | 10.1 | 14.8 |
Greskovich[ | 16.2 | 27.5 | 10.2 | 10.5 | 13.9 |
Sun[ | 16.8 | 31.8 | 17.4 | 19.1 | 19.0 |
Jowitt[ | 20.9 | 20.2 | 11.4 | 10.7 | 15.0 |
Kokal[ | 40.5 | 20.1 | 18.6 | 11.4 | 24.1 |
Bestion[ | 58.2 | 29.0 | 29.1 | 12.7 | 35.2 |
表8 漂移流模型预测MARD
Table 8 The MARD of drift flux models
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Nicklin[ | 21.0 | 20.5 | 11.1 | 10.1 | 14.8 |
Hughmark[ | 15.0 | 21.4 | 8.5 | 9.4 | 11.9 |
Gregory[ | 14.4 | 21.8 | 8.1 | 9.0 | 11.5 |
Rouhani[ | 19.0 | 20.9 | 10.1 | 9.6 | 13.8 |
Bonnecaze[ | 21.0 | 20.5 | 11.1 | 10.1 | 14.8 |
Dix[ | 41.0 | 19.2 | 22.3 | 17.1 | 26.6 |
Mattar[ | 20.9 | 20.5 | 11.0 | 10.1 | 14.8 |
Greskovich[ | 16.2 | 27.5 | 10.2 | 10.5 | 13.9 |
Sun[ | 16.8 | 31.8 | 17.4 | 19.1 | 19.0 |
Jowitt[ | 20.9 | 20.2 | 11.4 | 10.7 | 15.0 |
Kokal[ | 40.5 | 20.1 | 18.6 | 11.4 | 24.1 |
Bestion[ | 58.2 | 29.0 | 29.1 | 12.7 | 35.2 |
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Sterman[ | 37.1 | 67.3 | 73.1 | 179.2 | 77.0 |
Flanigan[ | 58.0 | 23.5 | 27.9 | 14.0 | 34.2 |
Neal[ | 25.4 | 16.0 | 20.6 | 14.4 | 20.6 |
Wallis[ | 21.9 | 57.5 | 39.5 | 39.9 | 36.5 |
El-Boher[ | 30.0 | 49.1 | 32.6 | 42.8 | 35.1 |
Huq[ | 21.0 | 16.1 | 12.5 | 7.9 | 14.7 |
Graham[ | 21.9 | 39.4 | 11.3 | 11.6 | 17.5 |
Cioncolini[ | 8.7 | 55.6 | 8.5 | 8.6 | 13.7 |
表9 经验公式模型预测误差
Table 9 The MARD of empirical formula models
模型 | MARD/% | ||||
---|---|---|---|---|---|
弹状流 | 泡状流 | 搅混流 | 环状流 | 总体 | |
Sterman[ | 37.1 | 67.3 | 73.1 | 179.2 | 77.0 |
Flanigan[ | 58.0 | 23.5 | 27.9 | 14.0 | 34.2 |
Neal[ | 25.4 | 16.0 | 20.6 | 14.4 | 20.6 |
Wallis[ | 21.9 | 57.5 | 39.5 | 39.9 | 36.5 |
El-Boher[ | 30.0 | 49.1 | 32.6 | 42.8 | 35.1 |
Huq[ | 21.0 | 16.1 | 12.5 | 7.9 | 14.7 |
Graham[ | 21.9 | 39.4 | 11.3 | 11.6 | 17.5 |
Cioncolini[ | 8.7 | 55.6 | 8.5 | 8.6 | 13.7 |
1 | Smith S L. Void fraction in two-phase flow: a correlation based upon an equal velocity head model[J]. Proceedings of the Institution of Mechanical Engineers, 1969, 184(1): 647-664. |
2 | Bankoff S G. A variable density single-fluid model for two-phase flow with particular reference to steam-water flow[J]. Journal of Heat Transfer, 1960, 82(4): 265-272. |
3 | 常立家, 岳丹婷, 吴桂涛. 两相流滑动比的最小熵增模型[J]. 大连海事大学学报, 2000, 26(1): 105-108. |
Chang L J, Yue D T, Wu G T. The minimum entropy production model of slip ratio in two-phase flow[J]. Journal of Dalian Maritime University, 2000, 26(1): 105-108. | |
4 | Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer, 1965, 87(4): 453-468. |
5 | Gao Z K, Hou L H, Dang W D, et al. Multitask-based temporal-channelwise CNN for parameter prediction of two-phase flows[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6329-6336. |
6 | Gao Z K, Li M Y, Hou L H, et al. Stage-wise densely connected network for parameter measurement of two-phase flows[J]. IEEE Sensors Journal, 2021, 21(16): 18123-18131. |
7 | Hazare S R, Patil C S, Vala S V, et al. Predictive analysis of gas hold-up in bubble column using machine learning methods[J]. Chemical Engineering Research and Design, 2022, 184: 724-739. |
8 | Li C F, Liu M M, Zhao N, et al. Void fraction measurement using modal decomposition and ensemble learning in vertical annular flow[J]. Chemical Engineering Science, 2022, 247: 116929. |
9 | Chu W J, Liu Y, Pan L Q, et al. Study on measure approach of void fraction in narrow channel based on fully convolutional neural network[J]. Frontiers in Energy Research, 2021, 9: 636813. |
10 | Xiao R G, Li K, Sun L Y, et al. The prediction of liquid holdup in horizontal pipe with BP neural network[J]. Energy Science & Engineering, 2020, 8(6): 2159-2168. |
11 | 于凯秋, 曹夏昕, 阎昌琪, 等. 摇摆状态下两相流空泡份额变化规律分析[J]. 哈尔滨工程大学学报, 2008, 29(11): 1250-1254. |
Yu K Q, Cao X X, Yan C Q, et al. Analysis of void fraction changes of two-phase flow in rolling tubes[J]. Journal of Harbin Engineering University, 2008, 29(11): 1250-1254. | |
12 | 田道贵, 孙立成, 阎昌琪, 等. 摇摆状态下两相流动局部参数光学探针测量实验[J]. 核动力工程, 2013, 34(4): 95-99. |
Tian D G, Sun L C, Yan C Q, et al. Experimental investigation on local parameter measurement using optical probes in two-phase flow under rolling condition[J]. Nuclear Power Engineering, 2013, 34(4): 95-99. | |
13 | 许升. 摇摆条件棒束通道相态特性的数值研究[D]. 重庆: 重庆大学, 2017. |
Xu S. Numerical study on phase characteristics in rod bundle under rolling condition[D]. Chongqing: Chongqing University, 2017. | |
14 | 金光远. 摇摆对矩形通道内两相流动阻力特性影响的研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. |
Jin G Y. Research on frictional resistance of two-phase flow in rectangular ducts in rolling motion[D]. Harbin: Harbin Engineering University, 2014. | |
15 | Xiao X, Zhu Q Z, Chen S W, et al. Investigation on two-phase distribution in a vibrating annulus[J]. Annals of Nuclear Energy, 2017, 108: 67-78. |
16 | Chen S W, Hibiki T, Ishii M, et al. Experimental investigation of horizontal forced-vibration effect on air-water two-phase flow[J]. International Journal of Heat and Fluid Flow, 2017, 65: 33-46. |
17 | 刘起超, 周云龙, 陈聪. 基于CEEMDAN和概率神经网络的起伏振动气液两相流型识别[J]. 仪器仪表学报, 2021, 42(10): 84-93. |
Liu Q C, Zhou Y L, Chen C. Flow pattern identification of fluctuating vibration gas liquid two phase flow based on CEEMDAN and probabilistic neural network[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 84-93. | |
18 | Massel S R. Ocean Surface Waves: Their Physics and Prediction[M]. Singapore: World Scientific, 1996. |
19 | 《中国大百科全书》总编委会、《中国大百科全书》编辑部. 中国大百科全书: 精粹本[M]. 北京: 中国大百科全书出版社, 2002: 243. |
Chief Editor of the Encyclopedia of China, Editorial Department of Encyclopedia of China. Encyclopedia of China[M]. Beijing: Encyclopedia of China Publishing House, 2002: 243. | |
20 | Yao C, Li H X, Xue Y Q, et al. Investigation on the frictional pressure drop of gas liquid two-phase flows in vertical downward tubes[J]. International Communications in Heat and Mass Transfer, 2018, 91: 138-149. |
21 | Xue Y Q, Li H X, Hao C Y, et al. Investigation on the void fraction of gas-liquid two-phase flows in vertically-downward pipes[J]. International Communications in Heat and Mass Transfer, 2016, 77: 1-8. |
22 | 陆廷济. 物理实验教程[M]. 上海: 同济大学出版社, 2000: 14-15. |
Lu T J. Physical Experiment Course[M]. Shanghai: Tongji University Press, 2000: 14-15. | |
23 | Armand A A. The resistance during the movement of a two-phase system in horizontal pipes[J]. Izvestiya Vsesoyuznogo Teplotekhnicheskogo Instituta, 1946, 1: 16-23. |
24 | Massena W A. Steam-water pressure drop and critical discharge flow—a digital computer program, hanford atomic products operation[R]. General Electric Co. Hanford Atomic Products Operation, Richland, Wash, 1960: HW-65706. |
25 | Nishino H, Yamazaki Y. A new method of evaluating steam volume fractions in boiling systems[J]. Journal of the Atomic Energy Society of Japan, 1963, 5(1): 39-46. |
26 | Greskovich E J, Cooper W T. Correlation and prediction of gas-liquid holdups in inclined upflows[J]. AIChE Journal, 1975, 21(6): 1189-1192. |
27 | Chisholm D. Two-Phase Flow in Pipelines and Heat Exchangers[M]. London: G. Godwin in Association with Institution of Chemical Engineers, 1983. |
28 | Czop V, Barbier D, Dong S. Pressure drop, void fraction and shear stress measurements in an adiabatic two-phase flow in a coiled tube[J]. Nuclear Engineering and Design, 1994, 149(1/2/3): 323-333. |
29 | El Hajal J, Thome J R, Cavallini A. Condensation in horizontal tubes (part 1): Two-phase flow pattern map[J]. International Journal of Heat and Mass Transfer, 2003, 46(18): 3349-3363. |
30 | Lockhart R, Martinelli R. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1): 39-48. |
31 | Isbin H S, Fauske H. Critical two-phase, steam-water flows[R]. United States, 1960. |
32 | Thom J R S. Prediction of pressure drop during forced circulation boiling of water[J]. International Journal of Heat and Mass Transfer, 1964, 7(7): 709-724. |
33 | Levy S. Discussion: “estimation of steady-state steam void-fraction by means of the principle of minimum entropy production”[J]. Journal of Heat Transfer, 1964, 86(2): 251-252. |
34 | Turner J M, Wallis G B. Two-phase flow and boiling heat transfer. The separate-cylinders model of two-phase flow[R]. USA, 1965. |
35 | Baroczy C J. A systemic correlation for two phase pressure drop[J]. Chemical Engineering Progress Symposium Series, 1966, 62: 232-249. |
36 | Chisholm D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 347-358. |
37 | Spedding P L, Chen J J J. Holdup in two phase flow[J]. International Journal of Multiphase Flow, 1984, 10(3): 307-339. |
38 | Chen J J J. A further examination of void fraction in annular two-phase flow[J]. International Journal of Heat and Mass Transfer, 1986, 29(11): 1760-1763. |
39 | Hamersma P J, Hart J. A pressure drop correlation for gas/liquid pipe flow with a small liquid holdup[J]. Chemical Engineering Science, 1987, 42(5): 1187-1196. |
40 | Petalas N, Aziz K. A mechanistic model for multiphase flow in pipes[J]. Journal of Canadian Petroleum Technology, 2000, 39(6): 43-54. |
41 | Nicklin D J. Two-phase flow in vertical tubes[J]. Transactions of the Institution of Chemical Engineers, 1962, 40: 61-68. |
42 | Hughmark G A. Holdup and heat transfer in horizontal slug gas-liquid flow[J]. Chemical Engineering Science, 1965, 20(12): 1007-1010. |
43 | Gregory G A, Nicholson M K, Aziz K. Correlation of the liquid volume fraction in the slug for horizontal gas-liquid slug flow[J]. International Journal of Multiphase Flow, 1978, 4(1): 33-39. |
44 | Rouhani S Z, Axelsson E. Calculation of void volume fraction in the subcooled and quality boiling regions[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 383-393. |
45 | Bonnecaze R H, Erskine Jr W, Greskovich E J. Holdup and pressure drop for two-phase slug flow in inclined pipelines[J]. AIChE Journal, 1971, 17(5): 1109-1113. |
46 | Dix G E. Vapor void fractions for forced convection with subcooled boiling at low flow rates[D]. Berkeley, CA, USA: University of California, Berkeley, 1972. |
47 | Mattar L, Gregory G. Air-oil slug flow in an upward-inclined pipe (Ⅰ): Slug velocity, holdup and pressure gradient[J]. Journal of Canadian Petroleum Technology, 1974, 13(1): 69-76. |
48 | Sun K H, Duffey R B, Peng C M. A thermal-hydraulic analysis of core uncovery[C]//Proceedings of the 19th National Heat Transfer Conference. Orlando, Florida, 1980: 1-19. |
49 | Jowitt D, Cooper C A, Pearson K G. The thetis 80% blocked cluster experiment (part 5): Level swell experiments[R]. US Government Report on Science and Technology, 1984. |
50 | Kokal S L, Stanislav J F. An experimental study of two-phase flow in slightly inclined pipes (Ⅱ): Liquid holdup and pressure drop[J]. Chemical Engineering Science, 1989, 44(3): 681-693. |
51 | Bestion D. The physical closure laws in the CATHARE code[J]. Nuclear Engineering and Design, 1990, 124(3): 229-245. |
52 | Sterman L S. The generalization of experimental data concerning the bubbling of vapor through liquid[J]. Technical Physics, 1956, 1: 1479-1485. |
53 | Flanigan O. Effect of uphill flow on pressure dop in design of two-phase gathering systems[J]. Oil and Gas Journal, 1958, 56: 132-141. |
54 | Neal L G, Bankoff S G. Local parameters in cocurrent mercury-nitrogen flow: parts Ⅰ and Ⅱ[J]. AIChE Journal, 1965, 11(4): 624-635. |
55 | Wallis G B. One-Dimensional Two-Phase Flow[M]. New York: McGraw-Hill, 1969. |
56 | El-Boher A, Lesin S, Unger Y, et al. Experimental studies of two phase liquid metal gas flows in vertical pipes[C]//Proceedings of the 1st World Conference on Experimental Heat Transfer. Dubrovnik, Yugoslavia, 1988. |
57 | Huq R, Loth J L. Analytical two-phase flow void prediction method[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(1): 139-144. |
58 | Yashar D A, Wilson M J, Kopke H R, et al. An investigation of refrigerant void fraction in horizontal, microfin tubes[J]. HVAC&R Research, 2001, 7(1): 67-82. |
59 | Cioncolini A, Thome J R. Void fraction prediction in annular two-phase flow[J]. International Journal of Multiphase Flow, 2012, 43: 72-84. |
60 | 蔡博. 复杂截面螺旋通道内气液两相流流动特性研究[D]. 北京: 北京工业大学, 2018. |
Cai B. Study on flow characteristics of gas-liquid two-phase flow in spiral channel with complex cross section[D].Beijing: Beijing University of Technology, 2018. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[3] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[4] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[5] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[6] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[7] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[8] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[9] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[10] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
[11] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
[12] | 苏巧玲, 王军锋, 张伟, 詹水清, 吴天一. 低电导率工质中气泡的极化运动实验研究[J]. 化工学报, 2022, 73(9): 3861-3869. |
[13] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
[14] | 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923. |
[15] | 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||