化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3309-3319.DOI: 10.11949/0438-1157.20230472
收稿日期:
2023-05-12
修回日期:
2023-08-20
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
杜文静
作者简介:
洪瑞(2000—),女,硕士研究生,hrui@mail.sdu.edu.cn
Rui HONG(), Baoqiang YUAN, Wenjing DU(
)
Received:
2023-05-12
Revised:
2023-08-20
Online:
2023-08-25
Published:
2023-10-18
Contact:
Wenjing DU
摘要:
超临界二氧化碳(SCO2)流动传热过程中会发生传热恶化现象,领域内对该现象产生的机理仍存在较大争议。针对现有提出的四类不同的传热恶化机理,通过数值模拟研究,分析在不同工况下内径为5 mm的垂直上升管流动传热过程,从微观层面探究传热恶化机理。研究结果表明,四类机理观点中浮升力效应能更好地解释传热恶化现象,其他三类均具有一定的局限性。SCO2传热恶化现象主要由密度变化引起的浮升力效应导致,当前工况下忽略重力影响时,传热恶化消失。浮升力效应通过改变内部流场的湍流结构,降低了湍动能的产生(层流化),湍流热扩散作用削弱使得传热效率下降,导致了传热恶化现象。研究结果对于SCO2传热恶化的理论研究和预测关联式具有一定的指导意义。
中图分类号:
洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319.
Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube[J]. CIESC Journal, 2023, 74(8): 3309-3319.
常数 | Abe-Kondoh-Nagano (1994) (AKN模型) | Modified model[ (VAKN模型) |
---|---|---|
Cμ | 0.09 | 0.09 |
Cε1 | 1.5 | 1.5 |
Cε2 | 1.9 | 1.9 |
σk | 1.4 | 1.4 |
σε | 1.4 | 1.4 |
Ct1 | — | 1 |
C t2 | — | 0.4 |
C t3 | — | -1.5 |
表1 湍流模型中的常数
Table 1 Constants in the turbulence model
常数 | Abe-Kondoh-Nagano (1994) (AKN模型) | Modified model[ (VAKN模型) |
---|---|---|
Cμ | 0.09 | 0.09 |
Cε1 | 1.5 | 1.5 |
Cε2 | 1.9 | 1.9 |
σk | 1.4 | 1.4 |
σε | 1.4 | 1.4 |
Ct1 | — | 1 |
C t2 | — | 0.4 |
C t3 | — | -1.5 |
工况 | 流动传热条件 | 对流类型 |
---|---|---|
Case A | Case 1(基本工况) | 混合对流 |
Case B | 密度变化,冻结其他物性 | 混合对流 |
Case C | 黏度变化,冻结其他物性 | 强迫对流 |
Case D | 比热容变化,冻结其他物性 | 强迫对流 |
Case E | 密度冻结 | 强迫对流 |
Case F | 不受重力 | 强迫对流 |
Case G | 恒壁温 | 强迫对流 |
Case H | 流动方向与Case A相反 | 混合对流 |
表2 仿真工况设计
Table 2 Simulation case setting
工况 | 流动传热条件 | 对流类型 |
---|---|---|
Case A | Case 1(基本工况) | 混合对流 |
Case B | 密度变化,冻结其他物性 | 混合对流 |
Case C | 黏度变化,冻结其他物性 | 强迫对流 |
Case D | 比热容变化,冻结其他物性 | 强迫对流 |
Case E | 密度冻结 | 强迫对流 |
Case F | 不受重力 | 强迫对流 |
Case G | 恒壁温 | 强迫对流 |
Case H | 流动方向与Case A相反 | 混合对流 |
图6 不同工况下壁温、对流传热系数和Nu的沿程分布情况
Fig.6 Distributions of local inner wall temperature, convective heat transfer coefficient and Nu along the tube length in different cases
图7 Case A和Case F的壁温、主流温度和Nu的沿程分布情况
Fig.7 Distributions of local inner wall temperature, bulk fluid temperature and Nu along the tube length in Case A and Case F
图12 Case A、Case F和Case H类气膜厚度及壁温随沿程分布情况
Fig.12 Distributions of gas-like film thickness and wall temperature along the tube length in Case A, Case F and Case H
1 | Liang Y C, Sun Z L, Dong M R, et al. Investigation of a refrigeration system based on combined supercritical CO2 power and transcritical CO2 refrigeration cycles by waste heat recovery of engine[J]. International Journal of Refrigeration, 2020, 118: 470-482. |
2 | Duschek W, Kleinrahm R, Wagner W. Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide ( Ⅱ ) : Saturated-liquid and saturated-vapour densities and the vapour pressure along the entire coexistence curve[J]. The Journal of Chemical Thermodynamics, 1990, 22(9): 841-864. |
3 | Liu Y P, Wang Y, Huang D G. Supercritical CO2 Brayton cycle: a state-of-the-art review[J]. Energy, 2019, 189: 115900. |
4 | 黄彦平, 王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程, 2012, 33(3): 21-27. |
Huang Y P, Wang J F. Applications of supercritical carbon dioxide in nuclear reactor system[J]. Nuclear Power Engineering, 2012, 33(3): 21-27. | |
5 | Duffey R B, Pioro I L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(8): 913-924. |
6 | Fan Y H, Tang G H. Numerical investigation on heat transfer of supercritical carbon dioxide in a vertical tube under circumferentially non-uniform heating[J]. Applied Thermal Engineering, 2018, 138: 354-364. |
7 | 张良, 朱兵国, 吴新明, 等. 超临界二氧化碳在垂直光管内的传热特性[J]. 中国电机工程学报, 2019, 39(15): 4487-4497. |
Zhang L, Zhu B G, Wu X M, et al. Heat transfer characteristics of supercritical pressure CO2 in a vertical smooth tube[J]. Proceedings of the CSEE, 2019, 39(15): 4487-4497. | |
8 | Zhang Q, Li H X, Lei X L, et al. Study on identification method of heat transfer deterioration of supercritical fluids in vertically heated tubes[J]. International Journal of Heat and Mass Transfer, 2018, 127: 674-686. |
9 | He J D, Yan J J, Wang W, et al. Effects of buoyancy and thermophysical property variations on the flow of supercritical carbon dioxide[J]. International Journal of Heat and Fluid Flow, 2020, 86: 108697. |
10 | 汪森林, 李照志, 邵应娟, 等. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082. |
Wang S L, Li Z Z, Shao Y J, et al. Numerical simulation on heat transfer deterioration of supercritical carbon dioxide in vertical tube[J]. CIESC Journal, 2022, 73(3): 1072-1082. | |
11 | Holman J P, Rea S N, Howard C E. Forced convection heat transfer to Freon 12 near the critical state in a vertical annulus[J]. International Journal of Heat and Mass Transfer, 1965, 8(8): 1095-1102. |
12 | Zhu B G, Xu J L, Wu X M, et al. Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes[J]. International Journal of Thermal Sciences, 2019, 136: 254-266. |
13 | Zhu B G, Xu J L, Yan C S, et al. The general supercritical heat transfer correlation for vertical up-flow tubes: K number correlation[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119080. |
14 | Zhang H S, Zhu X J, Zhu B G, et al. Effects of buoyancy and acceleration on heat transfer of supercritical CO2 flowing in tubes[J]. Acta Physica Sinica, 2020, 69(6): 064401. |
15 | Zhang H S, Xu J L, Wang Q Y, et al. Multiple wall temperature peaks during forced convective heat transfer of supercritical carbon dioxide in tubes[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121171. |
16 | Hall W B, Jackson J D, Watson A. Mixed forced and free convective heat transfer to supercritical pressure fluids flowing in vertical pipes[J]. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 1967, 182(9): 10-22. |
17 | Bae J H, Yoo J Y, Choi H. Direct numerical simulation of turbulent supercritical flows with heat transfer[J]. Physics of Fluids, 2005, 17(10): 105104. |
18 | Licht J, Anderson M, Corradini M. Heat transfer and fluid flow characteristics in supercritical pressure water[J]. Journal of Heat Transfer, 2009, 131(7): 072502. |
19 | Kumar N, Basu D N. Role of buoyancy on the thermalhydraulic behavior of supercritical carbon dioxide flow through horizontal heated minichannel[J]. International Journal of Thermal Sciences, 2021, 168: 107051. |
20 | Lei Y C, Xu B, Chen Z Q. Experimental investigation on cooling heat transfer and buoyancy effect of supercritical carbon dioxide in horizontal and vertical micro-channels[J]. International Journal of Heat and Mass Transfer, 2021, 181: 121792. |
21 | Zhu X J, Zhang R Z, Du X, et al. Experimental study on heat transfer deterioration of supercritical CO2 in a round tube: a boundary assessment[J]. International Communications in Heat and Mass Transfer, 2022, 134: 106055. |
22 | Jiang P X, Wang Z C, Xu R N. A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model[J]. International Journal of Heat and Mass Transfer, 2018, 127: 257-267. |
23 | 张宇, 姜培学, 石润富, 等. 竖直圆管中超临界压力CO2在低Re数下对流换热研究[J]. 工程热物理学报, 2008, 29(1): 118-120. |
Zhang Y, Jiang P X, Shi R F, et al. Convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers[J]. Journal of Engineering Thermophysics, 2008, 29(1): 118-120. | |
24 | Fewster J. Mixed forced and free convective heat transfer to supercritical pressure fluids flowing in vertical pipes[D]. Manchester: University of Manchester, 1976. |
25 | Xie J Z, Liu D C, Yan H B, et al. A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119233. |
26 | Pidaparti S R, McFarland J A, Mikhaeil M M, et al. Investigation of buoyancy effects on heat transfer characteristics of supercritical carbon dioxide in heating mode[J]. Journal of Nuclear Engineering and Radiation Science, 2015, 1(3): 031001. |
27 | Kurganov V A, Zeigarnik Y A, Maslakova I V. Heat transfer and hydraulic resistance of supercritical-pressure coolants ( Ⅰ ) : Specifics of thermophysical properties of supercritical pressure fluids and turbulent heat transfer under heating conditions in round tubes (state of the art)[J]. International Journal of Heat and Mass Transfer, 2012, 55(11/12): 3061-3075. |
28 | Lei X L, Peng R F, Guo Z M, et al. Experimental comparison of the heat transfer of carbon dioxide under subcritical and supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119562. |
29 | Kim D E, Kim M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. |
30 | Jackson J D. Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration[J]. Applied Thermal Engineering, 2017, 124: 1481-1491. |
31 | Kim D E, Kim M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. |
32 | Bae Y Y. Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel[J]. Nuclear Engineering and Design, 2011, 241(8): 3164-3177. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[8] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[9] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[10] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 756
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 574
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||