1 |
蒋明, 宁平, 王重华, 等. 含氰化氢废气治理研究进展[J]. 化工进展, 2012, 31(11): 2563-2569.
|
|
Jiang M, Ning P, Wang Z H, et al. Research progress of HCN-containing exhaust gas treatment[J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2563-2569.
|
2 |
Wang Z H, Jiang M, Ning P, et al. Thermodynamic modeling and gaseous pollution prediction of the yellow phosphorus production[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12194-12202.
|
3 |
Yuan S, Zhou Z J, Li J, et al. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy & Fuels, 2010, 24(11): 6166-6171.
|
4 |
Jiang M, Wang Z H, Ning P, et al. Dust removal and purification of calcium carbide furnace off-gas[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3): 901-907.
|
5 |
张艳琨, 杨春晓, 张可欣, 等. HCN气体在金属Cu、Zn表面吸附的密度泛函研究[J]. 原子与分子物理学报, 2021, 38(6): 47-52.
|
|
Zhang Y K, Yang C X, Zhang K X, et al. Density functional study of HCN gas adsorption on Cu and Zn surfaces[J]. Journal of Atomic and Molecular Physics, 2021, 38(6): 47-52.
|
6 |
Li Y J, Zhao Q, Yang H, et al. Adsorption performance of gaseous HCN on Ni/Al hydrotalcite-derived oxides[J]. Journal of Chemical Engineering of Japan, 2019, 52(5): 392-400.
|
7 |
Arani B O, Frouzakis C E, Mantzaras J, et al. Direct numerical simulation of turbulent channel-flow catalytic combustion: effects of Reynolds number and catalytic reactivity[J]. Combustion and Flame, 2018, 187: 52-66.
|
8 |
Schäfer S, Bonn B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion(Part 1): Homogeneous reactions[J]. Fuel, 2000, 79(10): 1239-1246.
|
9 |
Wang L L, Wang X Q, Cheng J H, et al. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal[J]. Applied Surface Science, 2018, 439: 213-221.
|
10 |
Wang X Q, Cheng J H, Wang X Y, et al. Mn based catalysts for driving high performance of HCN catalytic oxidation to N2 under micro-oxygen and low temperature conditions[J]. Chemical Engineering Journal, 2018, 333: 402-413.
|
11 |
Hu Y N, Liu J P, Cheng J H, et al. Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe, Cu) oxides[J]. Applied Surface Science, 2018, 427: 843-850.
|
12 |
Wang Q, Wang X Q, Wang L L, et al. Catalytic oxidation and hydrolysis of HCN over La x Cu y /TiO2 catalysts at low temperatures[J]. Microporous and Mesoporous Materials, 2019, 282: 260-268.
|
13 |
Wang X Q, Jing X L, Wang F, et al. Coupling catalytic hydrolysis and oxidation on metal-modified activated carbon for HCN removal[J]. RSC Advances, 2016, 6(62): 57108-57116.
|
14 |
王明飞. La-TiO2催化剂低温催化水解氰化氢的研究[D]. 昆明: 昆明理工大学, 2022.
|
|
Wang M F. Study on catalytic hydrolysis of hydrogen cyanide with La-TiO2 catalyst at low temperature[D]. Kunming: Kunming University of Science and Technology, 2022.
|
15 |
Hinde P, Demidyuk V, Gkelios A, et al. Plasma catalysis: a review of the interdisciplinary challenges faced: realising the potential of plasma catalysis on a commercial scale[J]. Johnson Matthey Technology Review, 2020, 64(2): 138-147.
|
16 |
Zhu X B, Gao X, Qin R, et al. Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor[J]. Applied Catalysis B: Environmental, 2015, 170/171: 293-300.
|
17 |
徐明铭. 空气湿度对直流电晕放电影响的研究[D]. 济南: 山东大学, 2014.
|
|
Xu M M. Study on influences of air humidity on direct current corona discharge[D]. Jinan: Shandong University, 2014.
|
18 |
Wang X Q, Xu K, Ma Y X, et al. Simultaneous removal of H2S and dust in the tail gas by DC corona plasma[J]. Plasma Chemistry and Plasma Processing, 2016, 36(6): 1545-1558.
|
19 |
赵艳辉, 周建刚, 吴晓东, 等. 不同结构介质阻挡放电的放电特性[J]. 大连海事大学学报, 2004, 30(3): 59-61, 87.
|
|
Zhao Y H, Zhou J G, Wu X D, et al. Study on discharge characteristic of different configurable DBD[J]. Journal of Dalian Maritime University, 2004, 30(3): 59-61, 87.
|
20 |
Kok D H K, Ibrahim R K R, Toemen S, et al. The catalytic efficiency of Ru/Mn/Ce-Al2O3 in the reduction of HCN in dry methane reforming with CO2 assisted by non-thermal plasma[J]. Journal of Physics: Conference Series, 2023, 2432(1): 012011.
|
21 |
Mohan N, Vijayalakshmi K P, Koga N, et al. Comparison of aromatic NH···π, OH···π, and CH···π interactions of alanine using MP2, CCSD, and DFT methods[J]. Journal of Computational Chemistry, 2010, 31(16): 2874-2882.
|
22 |
Devlin F J, Stephens P J. Ab initio density functional theory study of the structure and vibrational spectra of cyclohexanone and its isotopomers[J]. The Journal of Physical Chemistry A, 1999, 103(4): 527-538.
|
23 |
Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy[J]. Physical Chemistry Chemical Physics: PCCP, 2005, 7(18): 3297-3305.
|
24 |
Neitola R, Pakkanen T A. Ab initio studies on nanoscale friction between fluorinated diamond surfaces: effect of model size and level of theory[J]. The Journal of Physical Chemistry B, 2006, 110(33): 16660-16665.
|
25 |
纪红兵, 许建华, 谢俊锋, 等. 原位DRIFTS研究CH4部分氧化和CO2重整的耦合[J]. 光谱学与光谱分析, 2008, 28(6): 1246-1250.
|
|
Ji H B, Xu J H, Xie J F, et al. In-situ DRIFTS study of coupling partial oxidation of methane and carbon dioxide reforming[J]. Spectroscopy and Spectral Analysis, 2008, 28(6): 1246-1250.
|
26 |
Lu N, Bao X D, Jiang N, et al. Non-thermal plasma-assisted catalytic dry reforming of methane and carbon dioxide over G-C3N4-based catalyst[J]. Topics in Catalysis, 2017, 60(12): 855-868.
|
27 |
Zhang Q Z, Zhang R Q, Chan K S, et al. Ab initio and variational transition state approach to β-C3N4 formation: kinetics for the reaction of CH3NH2 with H[J]. The Journal of Physical Chemistry A, 2005, 109(40): 9112-9117.
|
28 |
暴晓丁. DBD等离子体协同g-C3N4基催化剂转化温室气体研究[D]. 大连: 大连理工大学, 2017.
|
|
Bao X D. Study on the transformation of greenhouse gases by DBD plasma with g-C3N4 based catalyst[D]. Dalian: Dalian University of Technology, 2017.
|
29 |
Ray D, Chawdhury P, Subrahmanyam C. A facile method to decompose CO2 using a g-C3N4-assisted DBD plasma reactor[J]. Environmental Research, 2020, 183: 109286.
|
30 |
Dong H, Guo X T, Yang C, et al. Synthesis of g-C3N4 by different precursors under burning explosion effect and its photocatalytic degradation for tylosin[J]. Applied Catalysis B: Environmental, 2018, 230: 65-76.
|
31 |
Manzetti S, Lu T. Alternant conjugated oligomers with tunable and narrow HOMO-LUMO gaps as sustainable nanowires[J]. RSC Advances, 2013, 3(48): 25881-25890.
|
32 |
Crowley J M, Tahir-Kheli J, Goddard W A. Resolution of the band gap prediction problem for materials design[J]. The Journal of Physical Chemistry Letters, 2016, 7(7): 1198-1203.
|