化工学报 ›› 2024, Vol. 75 ›› Issue (2): 706-714.DOI: 10.11949/0438-1157.20230728
收稿日期:
2023-07-13
修回日期:
2023-08-27
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
刘昌会
作者简介:
刘昌会(1987—),男,博士,副教授,liuch915@cumt.edu.cn
基金资助:
Changhui LIU(), Tong XIAO, Qingyi LIU, Long GENG, Jiateng ZHAO
Received:
2023-07-13
Revised:
2023-08-27
Online:
2024-02-25
Published:
2024-04-10
Contact:
Changhui LIU
摘要:
相变材料在热能存储技术中的应用往往受到形状不稳定、低导热等限制。基于钛酸四丁酯的水解反应,通过一步法原位合成了基于二氧化钛的新型定型相变材料。相变材料的定型过程无须任何固化剂和有机溶剂,且无任何污染排放。此外,定型相变材料表现出理想的形状稳定性和防泄漏性能,并具有较高潜热(115 J/g)。进一步研究发现未完全干燥的样品(SP)出现异常的双峰相变行为。以干燥时间为变量,通过对SP进行质量损失测试、组分分析等研究后发现,SP中残留的非石蜡液相物质和二氧化钛的协同效应促进了(110+111)晶体结构的生长,从而增大了结晶过程中石蜡的平均晶面间距,进一步导致被封装的石蜡结晶过程中(110+111)晶面与020晶面比例失衡,最终在差示扫描量热法(DSC)曲线中出现异常的双峰相变现象。
中图分类号:
刘昌会, 肖桐, 刘庆祎, 耿龙, 赵佳腾. 多孔二氧化钛强化的相变材料储热机理研究[J]. 化工学报, 2024, 75(2): 706-714.
Changhui LIU, Tong XIAO, Qingyi LIU, Long GENG, Jiateng ZHAO. Investigation of the thermal storage mechanism of porous TiO2 enhanced phase change materials[J]. CIESC Journal, 2024, 75(2): 706-714.
SP名称 | 干燥时间/h | SP名称 | 干燥时间/h |
---|---|---|---|
SP1 | 0 | SP8 | 21 |
SP2 | 3 | SP9 | 24 |
SP3 | 6 | SP10 | 27 |
SP4 | 9 | SP11 | 33 |
SP5 | 12 | SP12 | 39 |
SP6 | 15 | SP13 | 45 |
SP7 | 18 | SP14 | 51 |
表1 SP干燥时间对照
Table 1 Comparison of SP drying time
SP名称 | 干燥时间/h | SP名称 | 干燥时间/h |
---|---|---|---|
SP1 | 0 | SP8 | 21 |
SP2 | 3 | SP9 | 24 |
SP3 | 6 | SP10 | 27 |
SP4 | 9 | SP11 | 33 |
SP5 | 12 | SP12 | 39 |
SP6 | 15 | SP13 | 45 |
SP7 | 18 | SP14 | 51 |
1 | Liu C H, Zhang J H, Liu J, et al. Highly efficient thermal energy storage using a hybrid hypercrosslinked polymer[J]. Angewandte Chemie (International Ed. in English), 2021, 60(25): 13978-13987. |
2 | Liu Q Y, Zhang J H, Liu J, et al. Self-healed inorganic phase change materials for thermal energy harvesting and management[J]. Applied Thermal Engineering, 2023, 219: 119423. |
3 | Atinafu D G, Dong W J, Berardi U, et al. Phase change materials stabilized by porous metal supramolecular gels: gelation effect on loading capacity and thermal performance[J]. Chemical Engineering Journal, 2020, 394: 124806. |
4 | Usman A, Xiong F, Aftab W, et al. Emerging solid-to-solid phase-change materials for thermal-energy harvesting, storage, and utilization[J]. Advanced Materials, 2022, 34(41): e2202457. |
5 | Benner Jingru Z, Shannon Rebecca C, Wu W T, et al. The effect of micro-encapsulation on thermal characteristics of metallic phase change materials[J]. Applied Thermal Engineering, 2022, 207: 118055. |
6 | Chang C, Nie X, Li X X, et al. Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials[J]. Journal of Materials Chemistry A, 2020, 8(40): 20970-20978. |
7 | Dong X, Mao J F, Geng S B, et al. Study on performance optimization of sodium sulfate decahydrate phase change energy storage materials[J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(6): 3923-3934. |
8 | Fang Y, Qu Z G, Zhang J F, et al. Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material[J]. Applied Energy, 2020, 275: 115353. |
9 | Gao Y T, Zhang X L, Xu X F, et al. Application and research progress of phase change energy storage in new energy utilization[J]. Journal of Molecular Liquids, 2021, 343: 117554. |
10 | Hameed G, Ghafoor M A, Yousaf M, et al. Low temperature phase change materials for thermal energy storage: current status and computational perspectives[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101808. |
11 | Saleel C A. A review on the use of coconut oil as an organic phase change material with its melting process, heat transfer, and energy storage characteristics[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(7): 4451-4472. |
12 | Liu C H, Zong J H, Zhang J H, et al. Knitting aryl network polymers (KAPs)-embedded copper foam enables highly efficient thermal energy storage[J]. Journal of Materials Chemistry A, 2020, 8(30): 15177-15186. |
13 | Liu C H, Song Y, Ze X, et al. Highly efficient thermal energy storage enabled by a hierarchical structured hypercrosslinked polymer/expanded graphite composite[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119068. |
14 | Hu H L. Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system[J]. Composites Part B Engineering, 2020, 195(15): 108094. |
15 | Liu C H, Du P X, Fang B, et al. Experimental study on a functional microencapsulated phase change material for thermal management[J]. International Communications in Heat and Mass Transfer, 2020, 118: 104876. |
16 | Kumar A, Verma P, Varshney L. An experimental and numerical study on phase change material melting rate enhancement for a horizontal semi-circular shell and tube thermal energy storage system[J]. Journal of Energy Storage, 2022, 45: 103734. |
17 | Li J, Zhu Z Y, Arshad A, et al. Magnetic field-induced enhancement of phase change heat transfer via biomimetic porous structure for solar-thermal energy storage[J]. Journal of Bionic Engineering, 2021, 18(5): 1215-1224. |
18 | Li R X, Zhang Y, Chen H, et al. Exploring thermodynamic potential of multiple phase change thermal energy storage for adiabatic compressed air energy storage system[J]. Journal of Energy Storage, 2021, 33: 102054. |
19 | Yan C N, Meng N, Lyu W, et al. Hierarchical porous hollow carbon spheres derived from spirofluorene- and aniline-linked conjugated microporous polymer for phase change energy storage[J]. Carbon, 2021, 176: 178-187. |
20 | Atinafu D G, Yun B Y, Wi S, et al. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities[J]. Environmental Research, 2021, 195: 110853. |
21 | Zhao B, Wang Y C, Wang C B, et al. Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3 [J]. Journal of Energy Storage, 2021, 42: 103028. |
22 | Li B M, Shu D, Wang R F, et al. Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage[J]. Renewable Energy, 2020, 145: 84-92. |
23 | Liu C H, Xu Z, Song Y, et al. A novel shape-stabilization strategy for phase change thermal energy storage[J]. Journal of Materials Chemistry A, 2019, 7(14): 8194-8203. |
24 | McKenna P, Turner W J N, Finn D P. Thermal energy storage using phase change material: analysis of partial tank charging and discharging on system performance in a building cooling application[J]. Applied Thermal Engineering, 2021, 198: 117437. |
25 | Mochane M J, Mokhena T C, Motaung T E, et al. Shape-stabilized phase change materials of polyolefin/wax blends and their composites[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(5): 2951-2963. |
26 | Radomska E, Mika L, Sztekler K, et al. The impact of heat exchangers' constructions on the melting and solidification time of phase change materials[J]. Energies, 2020, 13(18): 4840. |
27 | Liu W, Zhang X L, Ji J, et al. A review on thermal properties improvement of phase change materials and its combination with solar thermal energy storage[J]. Energy Technology, 2021, 9(7): 2100169. |
28 | Louanate A, El Otmani R, Kandoussi K, et al. Dynamic modeling and performance assessment of single and double phase change material layer-integrated buildings in Mediterranean climate zone[J]. Journal of Building Physics, 2021, 44(5): 461-478. |
29 | Ma B, Wei K, Huang X F, et al. Preparation and investigation of NiTi alloy phase-change heat storage asphalt mixture[J]. Journal of Materials in Civil Engineering, 2020, 32(9): 04020250. |
30 | Tie J, Liu X, Tie S N, et al. Packing and properties of composite phase change energy storage materials based on SiC nanowires and Na2SO4·10H2O[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 855-862. |
31 | Abdul Jaleel S A, Kim T, Baik S. Covalently functionalized leakage-free healable phase-change interface materials with extraordinary high-thermal conductivity and low-thermal resistance[J]. Advanced Materials, 2023, 35(30): e2300956. |
32 | Liu Q Y, Xiao T, Zhao J T, et al. Phase change thermal energy storage enabled by an in situ formed porous TiO2 [J]. Small, 2023, 19(5): e2204998. |
33 | 张建雨, 王丽华, 潘金亮, 等. 南阳五种石油蜡的组成与晶体结构[J]. 华东理工大学学报(自然科学版), 2014, 40(3): 286-291, 301. |
Zhang J Y, Wang L H, Pan J L, et al. Composition and crystal structure of five petroleum waxes of Nanyang[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2014, 40(3): 286-291, 301. |
[1] | 陶明清, 慕明昊, 程滕, 王博. 喷雾耦合降温强化旋风分离器脱除细颗粒物的研究[J]. 化工学报, 2024, 75(2): 584-592. |
[2] | 王灵洁, 高海龙, 靳继鹏, 王志浩, 李见波. 海水中的污染物对逆电渗析电堆性能的影响[J]. 化工学报, 2024, 75(2): 695-705. |
[3] | 尹玉华, 方灿, 易清风, 李广. 不同碳导电剂对铁-空气电池性能的影响[J]. 化工学报, 2024, 75(2): 685-694. |
[4] | 余留洋, 刘书博, 贾晟哲, 马航, 万邦隆, 苏琦雯, 王静康, 汤伟伟, 贺豫娟, 龚俊波. 电子级磷酸的纯化精制技术发展现状与研究进展[J]. 化工学报, 2024, 75(1): 1-19. |
[5] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[8] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[9] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[10] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[11] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[12] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[13] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[14] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[15] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||