化工学报 ›› 2025, Vol. 76 ›› Issue (3): 1264-1274.DOI: 10.11949/0438-1157.20240865
齐珂1(
), 王迪1, 谢喆2, 陈东升1(
), 周云龙2, 孙灵芳1
收稿日期:2024-07-29
修回日期:2024-09-23
出版日期:2025-03-25
发布日期:2025-03-28
通讯作者:
陈东升
作者简介:齐珂(1999—),女,硕士研究生,2202200680@neepu.edu.cn
基金资助:
Ke QI1(
), Di WANG1, Zhe XIE2, Dongsheng CHEN1(
), Yunlong ZHOU2, Lingfang SUN1
Received:2024-07-29
Revised:2024-09-23
Online:2025-03-25
Published:2025-03-28
Contact:
Dongsheng CHEN
摘要:
为了解决化石能源枯竭和环境污染的问题,固体氧化物燃料电池(solid oxide fuel cell,SOFC)作为能量高效转换设备得到了快速发展。采用COMSOL软件建立平板式SOFC多物理场耦合模型,综合考虑电、热、流动和传质多物理场的相互作用,研究SOFC在输出电压、空气流速和燃料流速变化条件下的局部瞬态响应特性。结果表明,在输出电压为0.5、0.6和0.8 V时,燃料流速突降为0,功率密度变化幅度分别为-67%、-60%和-56%;电池功能层平均温度变化幅度和趋势呈现显著差异;燃料流速对于电池性能的影响明显大于空气流速变化;由于电池中电化学反应的直接参与和电极表面的快速反应,导致输出电压变化时,功率密度的响应速度最快。本研究为SOFC的优化设计提供了重要的理论依据和技术支撑。
中图分类号:
齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274.
Ke QI, Di WANG, Zhe XIE, Dongsheng CHEN, Yunlong ZHOU, Lingfang SUN. Research on transient characteristics of solid oxide fuel cells considering coupling features of multiphysics fields[J]. CIESC Journal, 2025, 76(3): 1264-1274.
| 几何结构 | 数值 |
|---|---|
| 电池长度L | 40 mm |
| 集流板高度HL | 1.5 mm |
| 集流板宽度WL | 2 mm |
| 流道高度HC | 1 mm |
| 阳极支撑层厚度HASL | 0.4 mm |
| 阳极功能层厚度HAFL | 0.01 mm |
| 电解质厚度HELE | 0.01 mm |
| 阴极功能层厚度HCFL | 0.01 mm |
| 阴极电流收集层厚度HCCCL | 0.015 mm |
表1 SOFC单元模型的结构参数
Table 1 Structural parameters of the SOFC unit model
| 几何结构 | 数值 |
|---|---|
| 电池长度L | 40 mm |
| 集流板高度HL | 1.5 mm |
| 集流板宽度WL | 2 mm |
| 流道高度HC | 1 mm |
| 阳极支撑层厚度HASL | 0.4 mm |
| 阳极功能层厚度HAFL | 0.01 mm |
| 电解质厚度HELE | 0.01 mm |
| 阴极功能层厚度HCFL | 0.01 mm |
| 阴极电流收集层厚度HCCCL | 0.015 mm |
| 边界条件 | 数值 | 边界条件 | 数值 |
|---|---|---|---|
| 气体入口温度 | 1073 K | 阳极热导率 | 6 W/(m·K) |
| 空气进口流速 | 3 m/s | 电解质热导率 | 2.7 W/(m·K) |
| 燃料气体进口流速 | 0.5 m/s | 阴极热导率 | 11 W/(m·K) |
| 初始工作压力 | 1 atm | 集流板热导率 | 20 W/(m·K) |
| 阴极孔隙率 | 0.3 | 阳极孔隙率 | 0.3 |
| 阳极渗透率 | 1.76×10-11 m2 | 开路电压 | 1 V |
| 阴极渗透率 | 1.76×10-11 m2 | 初始极化值 | 0.05 V |
| 阳极侧气体物质摩尔分数占比 | H2∶H2O=0.97∶0.03 | 阴极侧气体物质摩尔分数占比 | N2∶O2 = 0.79∶0.21 |
表2 SOFC模拟的部分条件参数
Table 2 Partial conditional parameters for SOFC simulation
| 边界条件 | 数值 | 边界条件 | 数值 |
|---|---|---|---|
| 气体入口温度 | 1073 K | 阳极热导率 | 6 W/(m·K) |
| 空气进口流速 | 3 m/s | 电解质热导率 | 2.7 W/(m·K) |
| 燃料气体进口流速 | 0.5 m/s | 阴极热导率 | 11 W/(m·K) |
| 初始工作压力 | 1 atm | 集流板热导率 | 20 W/(m·K) |
| 阴极孔隙率 | 0.3 | 阳极孔隙率 | 0.3 |
| 阳极渗透率 | 1.76×10-11 m2 | 开路电压 | 1 V |
| 阴极渗透率 | 1.76×10-11 m2 | 初始极化值 | 0.05 V |
| 阳极侧气体物质摩尔分数占比 | H2∶H2O=0.97∶0.03 | 阴极侧气体物质摩尔分数占比 | N2∶O2 = 0.79∶0.21 |
| 输出电压/V | 温度梯度/(K/cm) | |||||
|---|---|---|---|---|---|---|
| 1.1 s | 10 s | 50 s | 100 s | 200 s | 300 s | |
| 0.5+0.1 | 0.13 | 2.68 | 8.47 | 10.59 | 11.10 | 11.11 |
| 0.5-0.1 | 0.16 | 3.32 | 10.67 | 13.79 | 15.03 | 15.20 |
表3 改变输出电压时不同时刻电池内的温度梯度
Table 3 Temperature gradient within the cell at different time when changing the output voltage
| 输出电压/V | 温度梯度/(K/cm) | |||||
|---|---|---|---|---|---|---|
| 1.1 s | 10 s | 50 s | 100 s | 200 s | 300 s | |
| 0.5+0.1 | 0.13 | 2.68 | 8.47 | 10.59 | 11.10 | 11.11 |
| 0.5-0.1 | 0.16 | 3.32 | 10.67 | 13.79 | 15.03 | 15.20 |
| 时刻/s | 最大温度梯度/(K/cm) |
|---|---|
| 5 | 1.9 |
| 10 | 4.0 |
| 50 | 12.4 |
| 100 | 15.4 |
| 200 | 16.4 |
| 300 | 16.5 |
表4 改变燃料流速降为0时不同时刻电池内的温度梯度
Table 4 Temperature gradient within the cell at different time when the fuel flow rate drops to zero
| 时刻/s | 最大温度梯度/(K/cm) |
|---|---|
| 5 | 1.9 |
| 10 | 4.0 |
| 50 | 12.4 |
| 100 | 15.4 |
| 200 | 16.4 |
| 300 | 16.5 |
| 1 | Malik K, Capareda S C, Kamboj B R, et al. Biofuels production: a review on sustainable alternatives to traditional fuels and energy sources[J]. Fuels, 2024, 5(2): 157-175. |
| 2 | 隋依言, 姚辉超, 王秀林, 等. 基于专利的固体氧化物燃料电池技术趋势分析[J]. 现代化工, 2024, 44(3): 5-9. |
| Sui Y Y, Yao H C, Wang X L, et al. Patent-based analysis on development trends of solid oxide fuel cell technology[J]. Modern Chemical Industry, 2024, 44(3): 5-9. | |
| 3 | Shi N, Xie Y, Yang Y, et al. Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability[J]. Materials for Renewable and Sustainable Energy, 2020, 9(1): 6. |
| 4 | 王宇磊. 固体氧化物燃料电池稳态与动态特性分析[D]. 北京:北京交通大学, 2019. |
| Wang Y L. Analysis of steady-state and dynamic characteristics of solid oxide fuel cells[D]. Beijing: Beijing Jiaotong University, 2019. | |
| 5 | Ouyang T C, Zhao Z K, Lu J, et al. Waste heat cascade utilisation of solid oxide fuel cell for marine applications[J]. Journal of Cleaner Production, 2020, 275: 124133. |
| 6 | Khan T S, Hussain S, Anjum U, et al. In-silico screening of metal and bimetallic alloy catalysts for SOFC anode at high, intermediate and low temperature operations[J]. Electrochimica Acta, 2018, 281: 654-664. |
| 7 | Okoroafor E R, Bracci J, Boness N L, et al. A methodology for fueling mobility markets with hydrogen from natural gas plus carbon capture and sequestration[J]. International Journal of Greenhouse Gas Control, 2024, 133: 104095. |
| 8 | 宋明, 马帅, 杜传胜, 等. 不同流道布置的平板式固体氧化物燃料电池蠕变损伤研究[J]. 机械工程学报, 2023, 59(10): 76-84. |
| Song M, Ma S, Du C S, et al. Creep damage of planar solid oxide fuel cell with different arrangements of flow channels[J]. Journal of Mechanical Engineering, 2023, 59(10): 76-84. | |
| 9 | Ma S, Song M, Sun Y, et al. Study on creep damage and life prediction of the planar solid oxide fuel cell by modeling of multiphysics coupled[J]. International Journal of Hydrogen Energy, 2024, 51: 1573-1583. |
| 10 | Dang Z, Shen X, Ma J Y, et al. Multiphysics coupling simulation and parameter study of planar solid oxide fuel cell[J]. Frontiers in Chemistry, 2021, 8: 609338. |
| 11 | Chen D F, Zhu Y L, Han S, et al. Investigate the effect of a parallel-cylindrical flow field on the solid oxide fuel cell stack performance by 3D multiphysics simulating[J]. Journal of Energy Storage, 2023, 60: 106587. |
| 12 | Li H Y, Cui T H, Han M F. Anode-oxidizing critical operating conditions of large planar solid oxide fuel cell[J]. ECS Transactions, 2021, 103(1): 831-843. |
| 13 | Pellegrinelli C, Huang Y L, Taillon J A, et al. Investigating the relationship between operating conditions and SOFC cathode degradation[J]. ECS Transactions, 2015, 68(1): 773. |
| 14 | Yakabe H, Hishinuma M, Uratani M, et al. Evaluation and modeling of performance of anode-supported solid oxide fuel cell[J]. Journal of Power Sources, 2000, 86(1/2): 423-431. |
| 15 | Ferguson J R, Fiard J M, Herbin R. Three-dimensional numerical simulation for various geometries of solid oxide fuel cells[J]. Journal of Power Sources, 1996, 58(2): 109-122. |
| 16 | Ni M. 2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell[J]. Energy Conversion and Management, 2010, 51(4): 714-721. |
| 17 | Andersson M, Yuan J L, Sundén B. SOFC modeling considering electrochemical reactions at the active three phase boundaries[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 773-788. |
| 18 | Zhu P F, Yao J, Wu Z, et al. Construction of a transient multi-physics model of solid oxide fuel cell fed by biomass syngas considering the carbon deposition and temperature effect[J]. Chemical Engineering Journal, 2022, 442: 136159. |
| 19 | Jiang C Y, Gu Y C, Guan W B, et al. 3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodes[J]. International Journal of Hydrogen Energy, 2020, 45(1): 904-915. |
| 20 | Li B H, Wang C Y, Liu M, et al. Transient performance analysis of a solid oxide fuel cell during power regulations with different control strategies based on a 3D dynamic model[J]. Renewable Energy, 2023, 218: 119266. |
| 21 | 阳大楠. 基于多物理场耦合模型的固体氧化物燃料电池优化控制研究[D]. 成都: 电子科技大学, 2021. |
| Yang D N. Study on optimal control of solid oxide fuel cell based on multi-physical field coupling model[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
| 22 | 曹红亮. 固体氧化物燃料电池系统建模及热管理的研究[D]. 武汉: 华中科技大学, 2008: 39-40. |
| Cao H L. Study on modeling and thermal management of solid oxide fuel cell system[D]. Wuhan: Huazhong University of Science and Technology, 2008: 39-40. | |
| 23 | Cao H L, Deng Z H, Li X, et al. Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional derivatives[J]. International Journal of Hydrogen Energy, 2010, 35(4): 1749-1758. |
| 24 | Ni M, Leung M K H, Leung D Y C. Parametric study of solid oxide fuel cell performance[J]. Energy Conversion and Management, 2007, 48(5): 1525-1535. |
| 25 | 苏石川, 孔为, 陈代芬, 等. 热能工程与先进能源技术仿真与设计[M]. 北京: 化学工业出版社, 2015. |
| Su S C, Kong W, Chen D F, et al. Simulation and Design of Thermal Energy Engineering and Advanced Energy Technology[M]. Beijing: Chemical Industry Press, 2015. | |
| 26 | Andersson M, Nakajima H, Kitahara T, et al. Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1008-1022. |
| 27 | 吴亭雨. 固体氧化物燃料电池的多物理场模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
| Wu T Y. Multi-physical field simulation of solid oxide fuel cell[D]. Harbin: Harbin Institute of Technology, 2020. | |
| 28 | Wang Y, Zhan R B, Qin Y Z, et al. Three-dimensional modeling of pressure effect on operating characteristics and performance of solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(43): 20059-20076. |
| 29 | Todd B, Young J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling[J]. Journal of Power Sources, 2002, 110(1): 186-200. |
| 30 | Lee S, Kim H, Yoon K J, et al. The effect of fuel utilization on heat and mass transfer within solid oxide fuel cells examined by three-dimensional numerical simulations[J]. International Journal of Heat and Mass Transfer, 2016, 97: 77-93. |
| 31 | Nerat M. Modeling and analysis of short-period transient response of a single, planar, anode supported, solid oxide fuel cell during load variations[J]. Energy, 2017, 138: 728-738. |
| [1] | 张先开, 王博宇, 郭亚丽, 沈胜强. 水平圆管降膜蒸发式冷凝器热力性能计算分析[J]. 化工学报, 2025, 76(3): 995-1005. |
| [2] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| [3] | 田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984. |
| [4] | 孙芹, 周国庆, 翟万领, 高山, 罗倩倩, 屈健. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3): 1006-1017. |
| [5] | 张亦鸣, 杨鹏, 纪献兵, 任纪星, 张磊, 苗政. 多回路平板式环路热管热性能[J]. 化工学报, 2025, 76(3): 1018-1028. |
| [6] | 李科, 忻碧平, 文键. 液氢储罐中耦合蒸气冷却屏的连续变密度多层绝热的序列二次规划优化[J]. 化工学报, 2025, 76(3): 985-994. |
| [7] | 禹言芳, 张埔瑜, 孟辉波, 孙雯, 李雯, 乔文龙, 张梦琼. 仿生海螺型静态混合器传热与湍流脉动特性实验研究[J]. 化工学报, 2025, 76(3): 1040-1049. |
| [8] | 郭恭涵, 丁晖殿, 李强, 贾胜坤, 钱行, 苑杨, 陈海胜, 罗祎青. 间歇精馏操作过程的动态贝叶斯优化方法[J]. 化工学报, 2025, 76(2): 755-768. |
| [9] | 李海东, 张奇琪, 杨路, AKRAM Naeem, 常承林, 莫文龙, 申威峰. 采用智能进化算法的管壳式换热器详细设计[J]. 化工学报, 2025, 76(1): 241-255. |
| [10] | 陈晗, 蔡畅, 刘红, 尹洪超. 正戊醇添加剂强化喷雾冷却传热实验研究[J]. 化工学报, 2025, 76(1): 131-140. |
| [11] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
| [12] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
| [13] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
| [14] | 李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134. |
| [15] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号