化工学报 ›› 2025, Vol. 76 ›› Issue (1): 173-183.DOI: 10.11949/0438-1157.20240815
黄娜1(
), 蒋云龙2(
), 王东涵1, 吴明婷1, 蒋雪莉1, 钟豫1
收稿日期:2024-07-18
修回日期:2024-08-08
出版日期:2025-01-25
发布日期:2025-02-08
通讯作者:
蒋云龙
作者简介:黄娜(1987—),女,博士,讲师,hn20162662@163.com
基金资助:
Na HUANG1(
), Yunlong JIANG2(
), Donghan WANG1, Mingting WU1, Xueli JIANG1, Yu ZHONG1
Received:2024-07-18
Revised:2024-08-08
Online:2025-01-25
Published:2025-02-08
Contact:
Yunlong JIANG
摘要:
振动冷却通道内超临界正癸烷的裂解吸热流动过程因同时存在流场、温度场和物性场等多物理场间耦合作用,流动换热过程十分复杂。基于正癸烷裂解总包反应模型,对矩形振动通道内超临界正癸烷裂解流动换热过程进行数值研究,系统讨论通道振动频率对再生冷却通道流动换热性能的影响规律和作用机制。计算结果显示,通道振动会加强内部流体掺混,通道内二次流动随振动频率提高而增强,高频率振动引发的横向剪切对流体边界层产生扰动,使热侧近壁面边界层减薄,热壁的物理换热过程增强。然而,增强的物理换热降低了热壁表面正癸烷温度,使正癸烷裂解反应被推迟,化学热沉释放被延迟。不同振动频率下,裂解反应均在L/D>100处开始发生,在L/D=130处接近裂解反应速率峰值。与静止通道相比,振动通道热壁表面温度、传热系数及热壁表面正癸烷质量分数均呈不同特征的周期分布。研究结果可为运动通道内包含化学吸热反应的流动换热问题提供参考。
中图分类号:
黄娜, 蒋云龙, 王东涵, 吴明婷, 蒋雪莉, 钟豫. 通道振动频率对超临界正癸烷裂解流动换热影响的数值研究[J]. 化工学报, 2025, 76(1): 173-183.
Na HUANG, Yunlong JIANG, Donghan WANG, Mingting WU, Xueli JIANG, Yu ZHONG. Numerical study of influence of channel vibration frequency on flow and heat transfer of supercritical n-decane with pyrolysis reaction[J]. CIESC Journal, 2025, 76(1): 173-183.
| 振动 频率/Hz | Nuv/Nus | fv/fs | η | |||
|---|---|---|---|---|---|---|
| 50 | 0.894 | — | 1.264 | — | 0.827 | — |
| 100 | 1.070 | +0.20 | 1.365 | +0.08 | 0.965 | +0.17 |
| 200 | 1.243 | +0.16 | 1.647 | +0.21 | 1.052 | +0.09 |
| 400 | 1.405 | +0.13 | 2.013 | +0.37 | 1.094 | +0.04 |
表1 不同振动频率下综合流动换热性能比较
Table 1 Comparison of comprehensive flow heat transfer performance under different vibration frequencies
| 振动 频率/Hz | Nuv/Nus | fv/fs | η | |||
|---|---|---|---|---|---|---|
| 50 | 0.894 | — | 1.264 | — | 0.827 | — |
| 100 | 1.070 | +0.20 | 1.365 | +0.08 | 0.965 | +0.17 |
| 200 | 1.243 | +0.16 | 1.647 | +0.21 | 1.052 | +0.09 |
| 400 | 1.405 | +0.13 | 2.013 | +0.37 | 1.094 | +0.04 |
| 1 | Huang D, Li W. Heat transfer deterioration of aviation kerosene flowing in mini tubes at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2017, 111(1): 266-278. |
| 2 | Yi B D, Xiao K Y, Guang S C, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18. |
| 3 | 周红梅, 于胜春, 李昊, 等. 冲压发动机燃烧室内的压强振荡研究[J]. 飞航导弹, 2006(4): 44-47. |
| Zhou H M, Yu S C, Li H, et al. Study on the pressure oscillation in the combustion chamber of the stamping engine[J]. Flying Missile, 2006(4): 44-47. | |
| 4 | 王兆文, 周冬, 梁刚, 等. 大型船用柴油机活塞多腔振荡冷却的强化机制[J]. 内燃机学报, 2021, 39(4): 367-376. |
| Wang Z W, Zhou D, Liang G, et al. Enhanced cooling mechanism of piston multi-cavity oscillation cooling in a large marine diesel engine[J]. Journal of Internal Combustion Engine, 2021, 39(4): 367-376. | |
| 5 | Setareh M, Saffar-Avval M, Abdullah A. Experimental and numerical study on heat transfer enhancement using ultrasonic vibration in a double-pipe heat exchanger[J]. Applied Thermal Engineering, 2019, 159: 113867. |
| 6 | Ji J D, Zhang J W, Li F Y, et al. Numerical research on vibration-enhanced heat transfer of improved elastic tube bundle heat exchanger[J]. Case Studies in Thermal Engineering, 2022, 33: 101936. |
| 7 | 傅佳宏, 肖奔, 张宇, 等. 振动激励下的封闭通道流动传热特性实验研究[J]. 热科学与技术, 2020, 19(3): 220-225. |
| Fu J H, Xiao B, Zhang Y, et al. Experimental research on flow and heat transfer characteristics in closed channel under vibration excitation[J]. Thermal Science and Technology, 2020, 19(3): 220-225. | |
| 8 | Zheng Y, Chen J Y, Shang Y, et al. Numerical analysis of the influence of wall vibration on heat transfer with liquid hydrogen boiling flow in a horizontal tube[J]. International Journal of Hydrogen Energy, 2017, 42: 30804-30812. |
| 9 | Zhang W Y, Yang W W, Jiao Y H, et al. Numerical study of periodical wall vibration effects on the heat transfer and fluid flow of internal turbulent flow[J]. International Journal of Thermal Sciences, 2022, 173: 107367. |
| 10 | Liu W J, Yang Z, Zhang B, et al. Experimental study on the effects of mechanical vibration on the heat transfer characteristics of tubular laminar flow[J]. International Journal of Heat and Mass Transfer, 2017, 115: 169-179. |
| 11 | Tian S, Barigou M. An improved vibration technique for enhancing temperature uniformity and heat transfer in viscous fluid flow[J]. Chemical Engineering Science, 2015, 123: 609-619. |
| 12 | Mohammed A M, Kapan S, Sen M, et al. Effect of vibration on heat transfer and pressure drop in a heat exchanger with turbulator[J]. Case Studies in Thermal Engineering, 2021, 28: 10168. |
| 13 | 昝浩. 外部振动条件下再生冷却系统不稳定流动换热研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
| Zan H. Research on unsteady flow and heat transfer characteristics for regenerative cooling system under external vibration condition[D]. Harbin: Harbin Institute of Technology, 2020. | |
| 14 | Zuo Y, Huang H R, Fu Y C, et al. Vibration effects on heat transfer characteristics of supercritical pressure hydrocarbon fuel in transition and turbulent states[J]. Applied Thermal Engineering, 2023, 219: 119617. |
| 15 | 刘书博, 赵东升, 杨懿. 高超声速飞行器热防护与热管理综合分析方法[J]. 飞机设计, 2023, 43(4): 32-36. |
| Liu S B, Zhao D S, Yang Y. Comprehensive analysis method of thermal protection and management design of hypersonic vehicles[J]. Aircraft Design, 2023, 43(4): 32-36. | |
| 16 | 刘小勇, 王明福, 刘建文, 等. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 226-252. |
| Liu X Y, Wang M F, Liu J W, et al. Review and prospect of research on scramjet[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878. | |
| 17 | 章思龙, 秦江, 周伟星, 等. 高超声速推进再生冷却研究综述[J]. 推进技术, 2018, 39(10): 2177-2190. |
| Zhang S L, Qin J, Zhou W X, et al. Review on regenerative cooling technology of hypersonic propulsion[J]. Journal of Propulsion Technology, 2018, 39(10): 2177-2190. | |
| 18 | Ward T A, Ervin J S, Shafer L, et al. Pressure effects on flowing mildly-cracked n-decane[J]. Journal of Propulsion and Power, 2005, 21(2): 344-355. |
| 19 | Ward T A, Ervin J S, Striebich R C, et al. Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J]. Journal of Propulsion & Power, 2004, 20(3): 394-402. |
| 20 | 黄晓峰, 刘朝晖, 杨帆. 高密度碳氢燃料JP-10流动换热及热裂解结焦试验研究[J]. 化工学报, 2024, 75(8): 2917-2928. |
| Huang X F, Liu Z H, Yang F. Experimental investigation of high-density hydrocarbon fuel JP-10 on heat transfer and pyrolysis characteristics[J]. CIESC Journal, 2024, 75(8): 2917-2928. | |
| 21 | 姚通, 钟北京. 正癸烷热解的小规模化学动力学机理模型[J]. 物理化学学报, 2013, 29(7):1385-1395. |
| Yao T, Zhong B J. Small-scale chemical kinetic mechanism models for pyrolysis of n-decane[J]. Acta Physico-Chimica Sinica, 2013, 29(7): 1385-1395. | |
| 22 | 裴晓晨. 能效评价用混合物热物性参数的简化计算方法[D]. 北京: 华北电力大学, 2023. |
| Pei X C. Simplified calculation method for thermal property parameters of mixtures for energy efficiency evaluation[D]. Beijing: North China Electric Power University, 2023. | |
| 23 | 张兆顺, 崔桂香. 流体力学[M]. 3版. 北京: 清华大学出版社, 2015. |
| Zhang Z S, Cui G X. Fluid Mechanics[M]. 3rd ed. Beijing: Tsinghua University Press, 2015. | |
| 24 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006. |
| Yang S M, Tao W Q. Heat Transfer[M]. 4th ed. Beijing: Higher Education Press, 2006. | |
| 25 | 毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830. |
| Mao Y F, Cao F, Shangguan Y Q. Computing method for convection heat transfer of supercritical pressure fluid in turbulent pipe flow[J]. CIESC Journal, 2024, 75(8): 2821-2830. | |
| 26 | 高金海, 马艳红, 洪杰, 等. 高超声速飞行器冲压燃烧室随机振动响应分析[J]. 北京航空航天大学学报, 2008, 34(8): 981-985. |
| Gao J H, Ma Y H, Hong J, et al. Random vibration response analysis of hypersonic flight vehicle ramjet combustor chamber structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(8): 981-985. | |
| 27 | 张云峰. 高速气流作用下冲压发动机进气道壁板结构振动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
| Zhang Y F. Study on vibration characteristic of ramjet inlet affected by high speed fluid flows[D]. Harbin: Harbin Institute of Technology, 2007. | |
| 28 | 王凯越, 王海鸥, 罗坤, 等. 壁面边界层附近高温圆柱绕流的直接数值模拟[J]. 工程热物理学报, 2024, 45(6): 1757-1762. |
| Wang K Y, Wang H O, Luo K, et al. Direct numerical simulation of flow around a high-temperature cylinder near a wall boundary layer[J]. Journal of Engineering Thermophysics, 2024, 45(6): 1757-1762. | |
| 29 | 尹应德, 农雅善, 李远羽, 等. 扭曲管同轴套管换热器强化传热和流阻特性[J]. 化工学报, 2024, 75(10):3528-3535. |
| Yin Y D, Nong Y S, Li Y Y, et al. Twisted tube coaxial casing heat exchanger strengthens the heat transfer and flow resistance characteristics[J]. CIESC Journal, 2024, 75(10):3528-3535. | |
| 30 | 王俊博, 谢攀, 刘志春, 等. 最小㶲损优化方法在椭圆换热管内的应用[J]. 化工学报, 2016, 67(S1): 307-311. |
| Wang J B, Xie P, Liu Z C, et al. Application of energy destruction minimization in convective heat transfer optimization for elliptical tube[J]. CIESC Journal, 2016, 67(S1): 307-311. |
| [1] | 陈晗, 蔡畅, 刘红, 尹洪超. 正戊醇添加剂强化喷雾冷却传热实验研究[J]. 化工学报, 2025, 76(1): 131-140. |
| [2] | 李彦, 郭红利, 苏国庆, 张建文. 加氢装置空冷器气液两相流动与冲刷腐蚀问题[J]. 化工学报, 2025, 76(1): 141-150. |
| [3] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
| [4] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
| [5] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
| [6] | 毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830. |
| [7] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
| [8] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
| [9] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
| [10] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
| [11] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
| [12] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
| [13] | 张香港, 常玉龙, 汪华林, 江霞. 废弃秸秆等生物质低能耗非相变秒级干燥[J]. 化工学报, 2024, 75(7): 2433-2445. |
| [14] | 王芝安, 兰忠, 马学虎. 喷嘴参数对超临界水热燃烧特性影响的模拟[J]. 化工学报, 2024, 75(6): 2190-2200. |
| [15] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号