1 |
中国通服数字基建产业研究院. 中国数据中心产业发展白皮书[R]. 2023.
|
|
China General Services Digital Infrastructure Industry Research Institute. China data center industry development white paper[R]. 2023.
|
2 |
王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
|
|
Wang F, Wang J M, Shao S Q. Multi-stage heat transfer temperature difference analysis of data center cooling system[J]. CIESC Journal, 2021, 72(S1): 348-355.
|
3 |
Shao S Q, Liu H C, Zhang H N, et al. Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers[J]. Energy, 2019, 185: 829-836.
|
4 |
Velardo J, Date A, Singh R, et al. Experimental investigation of a vapour chamber heat spreader with hybrid wick structure[J]. International Journal of Thermal Sciences, 2019, 140: 28-35.
|
5 |
Huang G, Liu W, Luo Y, et al. Fabrication and thermal performance of mesh-type ultra-thin vapor chambers[J]. Applied Thermal Engineering, 2019, 162:114263.
|
6 |
Xu J Y, Hong F J, Zhang C Y. Experimental and parametric study in pool boiling enhancement with self-induced jet impingement on the microporous copper surface using R1336mzz(Z)[J]. International Communications in Heat and Mass Transfer, 2024, 151: 107214.
|
7 |
Meng F X, Zhang Q, Lin Y L, et al. Field study on the performance of a thermosyphon and mechanical refrigeration hybrid cooling system in a 5G telecommunication base station[J]. Energy, 2022, 252: 123744.
|
8 |
Sun Z Q, Fan R J, Zheng N B. Thermal management of a simulated battery with the compound use of phase change material and fins: experimental and numerical investigations[J]. International Journal of Thermal Sciences, 2021, 165: 106945.
|
9 |
申利梅, 胡博兴, 谢雨霏, 等. 超薄平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(S1): 198-205.
|
|
Shen L M, Hu B X, Xie Y F, et al. Experimental study on heat transfer performance of ultra-thin flat heat pipe[J]. CIESC Journal, 2023, 74(S1): 198-205.
|
10 |
杨辉著, 兰精灵, 杨月, 等. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569.
|
|
Yang H Z, Lan J L, Yang Y, et al. Experimental study on thermal performance of high power flat heat pipe[J]. CIESC Journal, 2023, 74(4): 1561-1569.
|
11 |
Qin S Y, Liu Y J, Ji R Y, et al. Effect of compact thermosyphon height on boiling curve and thermal performance: a visualization analysis[J]. Applied Thermal Engineering, 2024, 240: 122142.
|
12 |
Qin S Y, Ji R Y, Miao C Y, et al. Review of enhancing boiling and condensation heat transfer: surface modification[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113882.
|
13 |
Zhang J, Zhu X W, Mondejar M E, et al. A review of heat transfer enhancement techniques in plate heat exchangers[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 305-328.
|
14 |
Patankar G, Weibel J A, Garimella S V. On the transient thermal response of thin vapor chamber heat spreaders: governing mechanisms and performance relative to metal spreaders[J]. International Journal of Heat and Mass Transfer, 2019, 136: 995-1005.
|
15 |
Patankar G, Weibel J A, Garimella S V. Working-fluid selection for minimized thermal resistance in ultra-thin vapor chambers[J]. International Journal of Heat and Mass Transfer, 2017, 106: 648-654.
|
16 |
Zhang H N, Shao S Q, Tian C Q, et al. A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 789-798.
|
17 |
Meng J H, Gao D Y, Liu Y, et al. Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance[J]. Energy, 2022, 245: 123332.
|
18 |
Wang X Y, Yao H C, Li J, et al. Experimental and numerical investigation on heat transfer characteristics of ammonia thermosyhpons at shallow geothermal temperature[J]. International Journal of Heat and Mass Transfer, 2019, 136: 1147-1159.
|
19 |
Ma X J, Xu J L, Xie J. In-situ phase separation to improve phase change heat transfer performance[J]. Energy, 2021, 230: 120845.
|
20 |
Cheng C X, Lai Z X, Jin T X, et al. Rapid nucleation and growth of tetrafluoroethane hydrate in the cyclic process of boiling–condensation[J]. Energy, 2022, 256: 124647.
|
21 |
Liu H, Gan W, Yao H C, et al. Visualization and heat transfer comparative analysis of two phase closed thermosyphon[J]. Applied Thermal Engineering, 2022, 217: 119172.
|
22 |
Lu G, Wang X D, Yan W M. Nucleate boiling inside small evaporating droplets: an experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2017, 108: 2253-2261.
|
23 |
魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73.
|
|
Wei J J, Liu L, Yang X P. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices[J]. CIESC Journal, 2023, 74(1): 60-73.
|
24 |
Wang H W, Bai P F, Zhou H L, et al. An integrated heat pipe coupling the vapor chamber and two cylindrical heat pipes with high anti-gravity thermal performance[J]. Applied Thermal Engineering, 2019, 159: 113816.
|
25 |
Yao F, Miao S S, Zhang M C, et al. An experimental study of an anti-gravity vapor chamber with a tree-shaped evaporator[J]. Applied Thermal Engineering, 2018, 141: 1000-1008.
|
26 |
Bottini J L, Zhu L, Ooi Z J, et al. Experimental study of boiling flow in a vertical heated annulus with local two-phase measurements and visualization[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119712.
|
27 |
刘腾庆, 闫文韬, 杨鑫, 等. 强化平板热管传热性能的研究进展[J]. 化工学报, 2021, 72(11): 5468-5480.
|
|
Liu T Q, Yan W T, Yang X, et al. Research progress on enhanced thermal performance of flat plate heat pipe[J]. CIESC Journal, 2021, 72(11): 5468-5480.
|
28 |
Yao S C, Chang Y. Pool boiling heat transfer in a confined space[J]. International Journal of Heat and Mass Transfer, 1983, 26(6): 841-848.
|
29 |
Surtaev A, Serdyukov V, Zhou J J, et al. An experimental study of vapor bubbles dynamics at water and ethanol pool boiling at low and high heat fluxes[J]. International Journal of Heat and Mass Transfer, 2018, 126: 297-311.
|
30 |
Xia G D, Wang W, Cheng L X, et al. Visualization study on the instabilities of phase-change heat transfer in a flat two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2017, 116: 392-405.
|
31 |
Narcy M, Lips S, Sartre V. Experimental investigation of a confined flat two-phase thermosyphon for electronics cooling[J]. Experimental Thermal and Fluid Science, 2018, 96: 516-529.
|
32 |
Wang G, Wang T, Hu T, et al. Visualization research and simulation analysis on flat plate heat pipe[J]. Heat and Mass Transfer, 2022, 58(9): 1649-1665.
|
33 |
Kumar N, Urkude N, Sonawane S S, et al. Experimental study on pool boiling and critical heat flux enhancement of metal oxides based nanofluid[J]. International Communications in Heat and Mass Transfer, 2018, 96: 37-42.
|
34 |
Wang C, Yao F, Shi J, et al. Visualization study on thermo-hydrodynamic behaviors of a flat two-phase thermosyphon[J]. Energies, 2018, 11(9): 2295.
|
35 |
Nishio S, Tanaka H. Visualization of boiling structures in high heat-flux pool-boiling[J]. International Journal of Heat and Mass Transfer, 2004, 47(21): 4559-4568.
|