| [1] |
Han G H, Lee S H, Hwang S Y, et al. Advanced development strategy of nano catalyst and DFT calculations for direct synthesis of hydrogen peroxide[J]. Advanced Energy Materials, 2021, 11(27): 2003121.
|
| [2] |
Sun B, Zhu H W, Liang W Y, et al. A safe and clean way to produce H2O2 from H2 and O2 within the explosion limit range[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19547-19554.
|
| [3] |
Janicke M T, Kestenbaum H, Hagendorf U, et al. The controlled oxidation of hydrogen from an explosive mixture of gases using a microstructured reactor/heat exchanger and Pt/Al2O3 catalyst[J]. Journal of Catalysis, 2000, 191(2): 282-293.
|
| [4] |
Biasi P, Menegazzo F, Pinna F, et al. Continuous H2O2 direct synthesis over PdAu catalysts[J]. Chemical Engineering Journal, 2011, 176/177: 172-177.
|
| [5] |
Voloshin Y, Lawal A. Kinetics of hydrogen peroxide reduction by hydrogen in a microreactor[J]. Applied Catalysis A: General, 2009, 353(1): 9-16.
|
| [6] |
Crole D A, Freakley S J, Edwards J K, et al. Direct synthesis of hydrogen peroxide in water at ambient temperature[J]. Proceedings. Mathematical, Physical, and Engineering Sciences, 2016, 472(2190): 20160156.
|
| [7] |
Dou Z J, Tang W Q, Xie P, et al. Solvent effects on Diels–Alder reaction in ionic liquids: a reaction density functional study[J]. Chinese Journal of Chemical Engineering, 2024, 66: 180-188.
|
| [8] |
Liu Q S, Bauer J C, Schaak R E, et al. Direct synthesis of H2O2 from H2 and O2 over Pd–Pt/SiO2 bimetallic catalysts in a H2SO4/ethanol system[J]. Applied Catalysis A: General, 2008, 339(2): 130-136.
|
| [9] |
Beckman E J. Supercritical and near-critical CO2 in green chemical synthesis and processing[J]. The Journal of Supercritical Fluids, 2004, 28(2/3): 121-191.
|
| [10] |
Pera-Titus M, Miachon S, Dalmon J A. Increased gas solubility in nanoliquids: Improved performance in interfacial catalytic membrane contactors[J]. AIChE Journal, 2009, 55(2): 434-441.
|
| [11] |
Adams J S, Chemburkar A, Priyadarshini P, et al. Solvent molecules form surface redox mediators in situ and cocatalyze O2 reduction on Pd[J]. Science, 2021, 371(6529): 626-632.
|
| [12] |
Flaherty D W. Direct synthesis of H2O2 from H2 and O2 on Pd catalysts: current understanding, outstanding questions, and research needs[J]. ACS Catalysis, 2018, 8(2): 1520-1527.
|
| [13] |
Lee C W, Cho N H, Nam K T, et al. Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate[J]. Nature Communications, 2019, 10: 3919.
|
| [14] |
Yang Z Y, Hao Z H, Zhou S X, et al. Pd-Sn alloy catalysts for direct synthesis of hydrogen peroxide from H2 and O2 in a microchannel reactor[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23058-23067.
|
| [15] |
Yang Z Y, Wei Z X, Zhou S X, et al. Direct thermal catalytic synthesis of hydrogen peroxide by using microchip reactor[J]. Chemical Engineering Journal, 2023, 456: 140915.
|
| [16] |
Li H C, Wan Q, Du C C, et al. Layered Pd oxide on PdSn nanowires for boosting direct H2O2 synthesis[J]. Nature Communications, 2022, 13: 6072.
|
| [17] |
Zheng S Y, He Y T, Liu J C, et al. Palladium–tin alloy nanoparticles in different crystalline phases for direct hydrogen peroxide synthesis[J]. ACS Applied Nano Materials, 2024, 7(11): 13603-13610.
|
| [18] |
Liu Y F, Liu Z Q, Zhang J, et al. Efficient catalytic production of hydrogen peroxide using tin-containing zeolite fixed palladium nanoparticles with oxidation resistance[J]. Angewandte Chemie International Edition, 2023, 62(47): e202312377.
|
| [19] |
Chen L, Medlin J W, Grönbeck H. On the reaction mechanism of direct H2O2 formation over Pd catalysts[J]. ACS Catalysis, 2021, 11(5): 2735-2745.
|
| [20] |
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561.
|
| [21] |
Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Physical Review B, 1994, 49(20): 14251-14269.
|
| [22] |
Blöchl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
|
| [23] |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775.
|
| [24] |
Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
|
| [25] |
Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
|
| [26] |
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.
|
| [27] |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.
|
| [28] |
Sheppard D, Terrell R, Henkelman G. Optimization methods for finding minimum energy paths[J]. The Journal of Chemical Physics, 2008, 128(13): 134106.
|
| [29] |
Li P, Han J L, Liu Z Y, et al. Theoretical study on the evolution of Pd catalysts and the effect on catalytic activity and selectivity during H2O2 direct synthesis[J]. Molecular Catalysis, 2023, 542: 113129.
|
| [30] |
Jiang D H, Shi Y Y, Zhou L M, et al. Co-enhanced Pd-based catalysts for direct synthesis of hydrogen peroxide: Insights from DFT studies and experimental verification[J]. Journal of Alloys and Compounds, 2024, 1002: 175265.
|
| [31] |
Chen G H, Peng C, Wang B H, et al. Descriptor-based screening of dual-atom photocatalysts for efficient urea synthesis from CO2 and N2 [J]. The Journal of Physical Chemistry Letters, 2025, 16(26): 6851-6860.
|
| [32] |
Doronkin D E, Wang S, Sharapa D I, et al. Dynamic structural changes of supported Pd, PdSn, and PdIn nanoparticles during continuous flow high pressure direct H2O2 synthesis[J]. Catalysis Science & Technology, 2020, 10(14): 4726-4742.
|
| [33] |
Jiang R B, Guo W Y, Li M, et al. Density functional investigation of methanol dehydrogenation on Pd(111)[J]. The Journal of Physical Chemistry C, 2009, 113(10): 4188-4197.
|