CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 675-684.DOI: 10.11949/0438-1157.20231039

• Energy and environmental engineering • Previous Articles     Next Articles

Purification mechanism of hydrogen cyanide by corona discharge and dielectric barrier discharge

Xin ZHANG(), Yu XUE, Yixing MA(), Xueqian WANG, Langlang WANG, Nifei XIE, Yi CHEN, Xiaoxia ZHOU   

  1. School of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Received:2023-10-08 Revised:2024-01-22 Online:2024-04-10 Published:2024-02-25
  • Contact: Yixing MA

电晕放电与介质阻挡放电净化氰化氢的机理

张欣(), 薛宇, 马懿星(), 王学谦, 王郎郎, 谢妮霏, 陈怡, 周晓霞   

  1. 昆明理工大学环境科学与工程学院,云南 昆明 650093
  • 通讯作者: 马懿星
  • 作者简介:张欣(1999—),女,硕士研究生,2411621385@qq.com
  • 基金资助:
    国家重点研发计划项目(2022YFC3901604);“兴滇英才支持计划”青年人才专项

Abstract:

Two low-temperature plasma generation methods, corona discharge and dielectric barrier discharge(DBD), are used to purify hydrogen cyanide (HCN), and the reaction mechanisms of the two are discussed. The results show that the purification efficiency of HCN is 76% when the specific input energy (SIE) is 8.3 kJ/L in corona discharge, and 94% when SIE is 11.9 kJ/L in dielectric barrier discharge. By using density functional theory (DFT) to introduce external electric field, Gaussian software is used to calculate and analyze the differences between the two different discharge modes in the HCN purification process. After the introduction of external electric field, the molecular structure and system energy of HCN molecules have changed. In corona discharge, OCN, the intermediate product of HCN conversion, is mainly converted into CO2 and N2, while in dielectric barrier discharge HCN is more easily combined with OH in the system to form H2O and —CN, and —CN will be polymerized into C3N4 under the action of high electron and particle density in DBD.

Key words: hydrogen cyanide, corona discharge, dielectric barrier discharge, density functional theory

摘要:

利用电晕放电以及介质阻挡放电两种低温等离子体产生方式净化氰化氢(HCN),同时对二者的反应机理进行探讨。结果表明,在电晕放电中当输入能量比(SIE)达到8.3 kJ/L,HCN净化效率为76%,在介质阻挡放电中当SIE为11.9 kJ/L时,HCN净化效率为94%;通过Gaussian 软件利用密度泛函理论(DFT)引入外电场,计算分析了两种不同放电方式在HCN净化过程中的差异,在引入外电场之后HCN分子的分子结构以及体系能量均发生了变化,在不同的放电方式中,HCN转化的中间产物—OCN在电晕放电中主要转化为CO2与N2,而在介质阻挡放电中HCN更容易与体系中—OH结合生成H2O与—CN,—CN会在介质阻挡放电中的高电子、粒子密度的作用下聚合为C3N4

关键词: 氰化氢, 电晕放电, 介质阻挡放电, 密度泛函理论

CLC Number: