CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1617-1634.DOI: 10.11949/0438-1157.20241058
• Process system engineering • Previous Articles Next Articles
Received:
2024-09-21
Revised:
2024-11-04
Online:
2025-05-12
Published:
2025-04-25
Contact:
Zhenglei HE
通讯作者:
何正磊
作者简介:
何正磊(1992—),男,博士,副教授,hezhenglei@scut.edu.cn
基金资助:
CLC Number:
Zhenglei HE, Dingding HU. Multi-objective optimization of papermaking wastewater based on multi-agent reinforcement learning[J]. CIESC Journal, 2025, 76(4): 1617-1634.
何正磊, 胡丁丁. 基于多智能体强化学习的造纸污水多目标优化[J]. 化工学报, 2025, 76(4): 1617-1634.
1 | He Z L, Qian J W, Li J G, et al. Data-driven soft sensors of papermaking process and its application to cleaner production with multi-objective optimization[J]. Journal of Cleaner Production, 2022, 372: 133803. |
2 | Man Y, Li J G, Hong M N, et al. Energy transition for the low-carbon pulp and paper industry in China[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 109998. |
3 | Wang Y, Yang G J, Wu B W, et al. Papermaking wastewater treatment coupled to 2,3-butanediol production by engineered psychrotrophic Raoultella terrigena[J]. Journal of Hazardous Materials, 2023, 458: 131994. |
4 | An X J, Zong Z B, Zhang Q H, et al. Novel thermo-alkali-stable cellulase-producing Serratia sp. AXJ-M cooperates with Arthrobacter sp. AXJ-M1 to improve degradation of cellulose in papermaking black liquor[J]. Journal of Hazardous Materials, 2022, 421: 126811. |
5 | Feng Z Q, Chen H L, Li H Q, et al. Preparation, characterization, and application of magnetic activated carbon for treatment of biologically treated papermaking wastewater[J]. Science of the Total Environment, 2020, 713: 136423. |
6 | Shen W H, Chen X Q, Corriou J P. Application of model predictive control to the BSM1 benchmark of wastewater treatment process[J]. Computers & Chemical Engineering, 2008, 32(12): 2849-2856. |
7 | Zhao J Y, Cao J S, Zhao Y J, et al. Catalytic ozonation treatment of papermaking wastewater by Ag-doped NiFe2O4: performance and mechanism[J]. Journal of Environmental Sciences, 2020, 97: 75-84. |
8 | Niu G Q, Liu Y, Zhou J, et al. SBR-extended Kalman filter model-based fault diagnosis and signal reconstruction for the papermaking wastewater treatment process[J]. Journal of Water Process Engineering, 2023, 56: 104420. |
9 | Wang Z F, Man Y, Hu Y S, et al. A deep learning based dynamic COD prediction model for urban sewage[J]. Environmental Science: Water Research & Technology, 2019, 5(12): 2210-2218. |
10 | Man Y, Shen W H, Chen X Q, et al. Dissolved oxygen control strategies for the industrial sequencing batch reactor of the wastewater treatment process in the papermaking industry[J]. Environmental Science: Water Research & Technology, 2018, 4(5): 654-662. |
11 | Carvalho Neves L, Beber de Souza J, de Souza Vidal C M, et al. Phytotoxicity indexes and removal of color, COD, phenols and ISA from pulp and paper mill wastewater post-treated by UV/H2O2 and photo-Fenton[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110939. |
12 | Croll H C, Ikuma K, Ong S K, et al. Reinforcement learning applied to wastewater treatment process control optimization: approaches, challenges, and path forward[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(20): 1775-1794. |
13 | 付文韬. 基于神经网络的污水处理多变量控制方法研究[D]. 北京: 北京工业大学, 2016. |
Fu W T. Research on multivariable control of sewage treatment based on neural networks[D]. Beijing: Beijing University of Technology, 2016. | |
14 | 陈文亮, 姚重华, 吕锡武. 活性污泥工艺的多目标优化分析[J]. 环境科学学报, 2013, 33(7): 1918-1925. |
Chen W L, Yao C H, Lü X W. Analysis of activated sludge process by multi-objective optimization[J]. Acta Scientiae Circumstantiae, 2013, 33(7): 1918-1925. | |
15 | He Z L, Liu C, Wang Y T, et al. Optimal operation of wind-solar-thermal collaborative power system considering carbon trading and energy storage[J]. Applied Energy, 2023, 352: 121993. |
16 | Hernández-del-Olmo F, Gaudioso E, Dormido R, et al. Tackling the start-up of a reinforcement learning agent for the control of wastewater treatment plants[J]. Knowledge-Based Systems, 2018, 144: 9-15. |
17 | Petsagkourakis P, Sandoval I O, Bradford E, et al. Reinforcement learning for batch bioprocess optimization[J]. Computers & Chemical Engineering, 2020, 133: 106649. |
18 | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
Zhu C Y, Wang Z L. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm[J]. CIESC Journal, 2023, 74(8): 3429-3437. | |
19 | 章康树. 基于神经网络的污水处理自适应控制方法初探[D]. 杭州: 浙江大学, 2019. |
Zhang K S. Preliminary study on adaptive control of sewage treatment based on neural networks[D]. Hangzhou: Zhejiang University, 2019. | |
20 | Min H T, Xiong X Y, Yang F, et al. An energy-efficient driving method for connected and automated vehicles based on reinforcement learning[J]. Machines, 2023, 11(2): 168. |
21 | Pal P, Thakura R, Chakrabortty S. Performance analysis and optimization of an advanced pharmaceutical wastewater treatment plant through a visual basic software tool (PWWT.VB)[J]. Environmental Science and Pollution Research, 2016, 23(10): 9901-9917. |
22 | Muoio R, Palli L, Ducci I, et al. Optimization of a large industrial wastewater treatment plant using a modeling approach: a case study[J]. Journal of Environmental Management, 2019, 249: 109436. |
23 | Faubert P, Barnabé S, Bouchard S, et al. Pulp and paper mill sludge management practices: what are the challenges to assess the impacts on greenhouse gas emissions?[J]. Resources, Conservation and Recycling, 2016, 108: 107-133. |
24 | Flores-Alsina X, Corominas L, Snip L, et al. Including greenhouse gas emissions during benchmarking of wastewater treatment plant control strategies[J]. Water Research, 2011, 45(16): 4700-4710. |
25 | Gémar G, Gómez T, Molinos-Senante M, et al. Assessing changes in eco-productivity of wastewater treatment plants: the role of costs, pollutant removal efficiency, and greenhouse gas emissions[J]. Environmental Impact Assessment Review, 2018, 69: 24-31. |
26 | He Z L, Lu Z H, Wang X, et al. Multiobjective optimization of papermaking wastewater treatment processes under economic, energy, and environmental goals[J]. Environmental Science & Technology, 2024, 58(36): 16076-16086. |
27 | Hanawal M K, Liu H, Zhu H H, et al. Learning policies for Markov decision processes from data[J]. arxiv: 1701.05954. . |
28 | Bäuerle N, Glauner A. Markov decision processes with recursive risk measures[J]. European Journal of Operational Research, 2022, 296(3): 953-966. |
29 | 王大芬, 唐莉丽, 张鑫焱, 等. 基于时差的多输出tri-training异构软测量建模[J]. 化工学报,2024, 75(9): 3242-3254. |
Wang D F, Tang L L, Zhang X Y, et al. Multi-output tri-training heterogeneous soft sensor modeling based on time difference[J]. CIESC Journal, 2024, 75(9): 3242-3254. | |
30 | 赵杨, 熊伟丽. 基于多策略自适应差分进化算法的污水处理过程多目标优化控制[J]. 化工学报, 2021, 72(4): 2167-2177. |
Zhao Y, Xiong W L. Multi-objective optimization control of wastewater treatment process based on multi-strategy adaptive differential evolution algorithm[J]. CIESC Journal, 2021, 72(4): 2167-2177. | |
31 | Henze M, Gujer W, Mino T, et al. Activated sludge models ASM1, ASM2, ASM2d and ASM3[J]. Water Intelligence Online, 2015, 5: 9781780402369. |
32 | Takács I, Patry G G, Nolasco D. A dynamic model of the clarification-thickening process[J]. Water Research, 1991, 25(10): 1263-1271. |
33 | He Z L, Hong M N, Zheng H Z, et al. Towards low-carbon papermaking wastewater treatment process based on Kriging surrogate predictive model[J]. Journal of Cleaner Production, 2023, 425: 139039. |
34 | Chatterjee T, Chowdhury R. Refined sparse Bayesian learning configuration for stochastic response analysis[J]. Probabilistic Engineering Mechanics, 2018, 52: 15-27. |
35 | 李雨. 基于数据驱动的原油管道电耗预测方法研究[D]. 北京: 中国石油大学, 2021. |
Li Y. Research on data-driven prediction method of crude oil pipeline power consumption[D]. Beijing: China University of Petroleum, 2021. | |
36 | He Z L, Tran K P, Thomassey S, et al. A deep reinforcement learning based multi-criteria decision support system for optimizing textile chemical process[J]. Computers in Industry, 2021, 125: 103373. |
37 | Mayer S, Classen T, Endisch C. Modular production control using deep reinforcement learning: proximal policy optimization[J]. Journal of Intelligent Manufacturing, 2021, 32(8): 2335-2351. |
38 | 陆造好, 满奕, 李继庚, 等. 基于深度强化学习的造纸废水处理过程多目标优化[J]. 中国造纸, 2023, 42(3): 13-22, 103. |
Lu Z H, Man Y, Li J G, et al. Multi-objective optimization of papermaking wastewater treatment process based on deep reinforcement learning[J]. China Pulp & Paper, 2023, 42(3): 13-22, 103. | |
39 | 黄菲妮. 造纸污水生化处理过程温室气体减排的溶解氧优化控制[D]. 广州: 华南理工大学, 2020. |
Huang F N. Optimal control of dissolved oxygen in greenhouse gas emission reduction during biochemical treatment of papermaking wastewater[D]. Guangzhou: South China University of Technology, 2020. | |
40 | Man Y, Hu Y S, Ren J Z. Forecasting COD load in municipal sewage based on ARMA and VAR algorithms[J]. Resources, Conservation and Recycling, 2019, 144: 56-64. |
[1] | Xiangrui ZHAI, Wei ZHANG, Qianqian ZHANG, Jiuzhe QU, Xufei YANG, Yajun DENG, Bo YU. Active heat transfer enhancement technology for solid-liquid phase change energy storage based on external field disturbance [J]. CIESC Journal, 2025, 76(4): 1432-1446. |
[2] | Junde ZHAO, Aiguo ZHOU, Yanlin CHEN, Jiale ZHENG, Tianshu GE. Current status of energy consumption of adsorption CO2 direct air capture [J]. CIESC Journal, 2025, 76(4): 1375-1390. |
[3] | Chengcheng XU, Suola SHAO, Wenjian WEI, Xu ZHENG. Research on heating performance of direct-condensation thermal storage aluminum radiant heating panel under multiple working conditions [J]. CIESC Journal, 2025, 76(4): 1545-1558. |
[4] | Yaqi HOU, Wei ZHANG, Hong ZHANG, Feiyu GAO, Jiahua HU. Optimization of LBM multiphase flow models based on machine learning and particle swarm algorithm [J]. CIESC Journal, 2025, 76(3): 1120-1132. |
[5] | Liwen ZHAO, Guilian LIU. Performance enhancement and parameter optimization of complex catalytic reaction system based on system integration [J]. CIESC Journal, 2025, 76(3): 1111-1119. |
[6] | Qin SUN, Guoqing ZHOU, Wanling ZHAI, Shan GAO, Qianqian LUO, Jian QU. Heat transfer characteristics of topology optimized channel flat-plate pulsating heat pipe under local multiple heat sources [J]. CIESC Journal, 2025, 76(3): 1006-1017. |
[7] | Ke LI, Biping XIN, Jian WEN. Sequential quadratic programming optimization of continuous variable density multi-layer insulation coupled with vapor cooled shield in liquid hydrogen storage tank [J]. CIESC Journal, 2025, 76(3): 985-994. |
[8] | Lyusheng ZHANG, Zhihong WANG, Qing LIU, Xuewen LI, Renmin TAN. Research progress in carbon dioxide capture using liquid-liquid phase change absorbents [J]. CIESC Journal, 2025, 76(3): 933-950. |
[9] | Xinying LI, Chang SU, Chao GUO, Jian PANG, Chao WANG, Chun LI. Application and optimization of CRISPR editing technology in Streptomyces [J]. CIESC Journal, 2025, 76(3): 922-932. |
[10] | Jing ZHANG, Yue YUAN, Yanmei LIU, Zhiwen WANG, Tao CHEN. Advance on the preparation of itaconic acid by biological method [J]. CIESC Journal, 2025, 76(3): 909-921. |
[11] | Gonghan GUO, Huidian DING, Qiang LI, Shengkun JIA, Xing QIAN, Yang YUAN, Haisheng CHEN, Yiqing LUO. Dynamic Bayesian optimization method for batch distillation operation process [J]. CIESC Journal, 2025, 76(2): 755-768. |
[12] | Jinhao BAI, Xiaoping GUAN, Ning YANG. Analysis and optimization of flow characteristics in a filter-press water electrolyzer mastoid plate [J]. CIESC Journal, 2025, 76(2): 584-595. |
[13] | Nannan XIE, He CHEN, Guanghua YE, Zhongming SHU, Songbao FU, Xinggui ZHOU. Interaction of multiple impellers for gas-liquid stirred tank and optimization of their combinations [J]. CIESC Journal, 2025, 76(2): 564-575. |
[14] | Chao REN, Kai WANG, Jie HAN, Chunhua YANG. Event-time triggered slow time-varying industrial process dynamic scheduling method [J]. CIESC Journal, 2025, 76(1): 256-265. |
[15] | Haidong LI, Qiqi ZHANG, Lu YANG, Naeem AKRAM, Chenglin CHANG, Wenlong MO, Weifeng SHEN. Detailed design of shell-and-tube heat exchanger using intelligent evolutionary algorithms [J]. CIESC Journal, 2025, 76(1): 241-255. |
Viewed | ||||||
Full text 42
|
|
|||||
Abstract |
|
|||||