CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3509-3520.DOI: 10.11949/0438-1157.20241062
• Energy and environmental engineering • Previous Articles Next Articles
Junyi WANG1,2,3(
), Zhangxun XIA1,3, Fenning JING1,3, Suli WANG1,3(
)
Received:2024-09-23
Revised:2024-12-23
Online:2025-08-13
Published:2025-07-25
Contact:
Suli WANG
王珺仪1,2,3(
), 夏章讯1,3, 景粉宁1,3, 王素力1,3(
)
通讯作者:
王素力
作者简介:王珺仪(1998—),女,硕士研究生,wangjunyi@dicp.ac.cn
基金资助:CLC Number:
Junyi WANG, Zhangxun XIA, Fenning JING, Suli WANG. Study on the relaxation time distribution of electrochemical impedance spectroscopy in high temperature polymer electrolyte membrane fuel cells based on reformed hydrogen fuels[J]. CIESC Journal, 2025, 76(7): 3509-3520.
王珺仪, 夏章讯, 景粉宁, 王素力. 基于重整气的高温聚合物电解质膜燃料电池电化学阻抗谱弛豫时间分布研究[J]. 化工学报, 2025, 76(7): 3509-3520.
Add to citation manager EndNote|Ris|BibTeX
| 样品名称 | Pt载量/(mg·cm-2) | 炭粉/(mg·cm-2) | PTFE/(mg·cm-2) |
|---|---|---|---|
| MEA-A0.2 | 0.2 | 0.8 | 0.3 |
| MEA-A0.6 | 0.6 | 0.5 | 0.3 |
| MEA-A1.0 | 1.0 | 0.3 | 0.3 |
| MEA-A1.4 | 1.4 | 0 | 0.3 |
Table 1 Structural information of anode MEAs
| 样品名称 | Pt载量/(mg·cm-2) | 炭粉/(mg·cm-2) | PTFE/(mg·cm-2) |
|---|---|---|---|
| MEA-A0.2 | 0.2 | 0.8 | 0.3 |
| MEA-A0.6 | 0.6 | 0.5 | 0.3 |
| MEA-A1.0 | 1.0 | 0.3 | 0.3 |
| MEA-A1.4 | 1.4 | 0 | 0.3 |
| 测试温度/℃ | ECSA/cm2 | |||
|---|---|---|---|---|
| MEA-A0.2 | MEA-A0.6 | MEA-A1.0 | MEA-A1.4 | |
| 160 | 12.47 | 18.55 | 29.70 | 46.08 |
| 170 | 14.26 | 33.31 | 60.48 | 61.90 |
| 180 | 17.65 | 51.61 | 85.40 | 60.00 |
Table 2 Electrochemical active surface area of anode
| 测试温度/℃ | ECSA/cm2 | |||
|---|---|---|---|---|
| MEA-A0.2 | MEA-A0.6 | MEA-A1.0 | MEA-A1.4 | |
| 160 | 12.47 | 18.55 | 29.70 | 46.08 |
| 170 | 14.26 | 33.31 | 60.48 | 61.90 |
| 180 | 17.65 | 51.61 | 85.40 | 60.00 |
| Gas | Tafel slop/(mV·dec-1) | |||||||
|---|---|---|---|---|---|---|---|---|
| 160℃ | 180℃ | |||||||
| MEA-A0.2 | MEA-A0.6 | MEA-A1.0 | MEA-A1.4 | MEA-A0.2 | MEA-A0.6 | MEA-A1.0 | MEA-A1.4 | |
| H2 | -115 | -110 | -113 | -107 | -119 | -112 | -111 | -107 |
| RE | -118 | -114 | -113 | -109 | -117 | -104 | -98 | -98 |
Table 3 Tafel slope of membrane electrodes
| Gas | Tafel slop/(mV·dec-1) | |||||||
|---|---|---|---|---|---|---|---|---|
| 160℃ | 180℃ | |||||||
| MEA-A0.2 | MEA-A0.6 | MEA-A1.0 | MEA-A1.4 | MEA-A0.2 | MEA-A0.6 | MEA-A1.0 | MEA-A1.4 | |
| H2 | -115 | -110 | -113 | -107 | -119 | -112 | -111 | -107 |
| RE | -118 | -114 | -113 | -109 | -117 | -104 | -98 | -98 |
| 氧气进料计量比 | 氢气进料计量比 | 温度/℃ | 电流密度/(mA·cm-2) | |
|---|---|---|---|---|
| H2进料 | RE进料 | |||
| 2.0 | 18 | — | 160 | 200 |
| 4.0 | 18 | — | 160 | 200 |
| 10.0 | 1.8,2.0,2.2 | 160,180 | 200,400 | |
Table 4 EIS testing conditions for membrane electrodes
| 氧气进料计量比 | 氢气进料计量比 | 温度/℃ | 电流密度/(mA·cm-2) | |
|---|---|---|---|---|
| H2进料 | RE进料 | |||
| 2.0 | 18 | — | 160 | 200 |
| 4.0 | 18 | — | 160 | 200 |
| 10.0 | 1.8,2.0,2.2 | 160,180 | 200,400 | |
| [1] | Li X, Tan H, Ni Z, et al. Select sensitivity parameters for proton exchange membrane fuel cell model: an identification method from analytical Butler-Volmer equation[J]. Journal of Power Sources, 2024, 608: 234330. |
| [2] | Rasheed R K A, Liao Q, Caizhi Z, et al. A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs)[J]. International journal of hydrogen energy, 2017, 42(5): 3142-3165. |
| [3] | Fan L, Zhang G, Jiao K. Characteristics of PEMFC operating at high current density with low external humidification[J]. Energy Conversion and Management, 2017, 150: 763-774. |
| [4] | Cullen D A, Neyerlin K C, Ahluwalia R K, et al. New roads and challenges for fuel cells in heavy-duty transportation[J]. Nature Energy, 2021, 6: 462-474. |
| [5] | Fan R X, Li Z Q, Zhang H M, et al. Analysis of a combined heating and power system based on high-temperature proton exchange membrane fuel cell and steam methane reforming: from energy, exergy and economic point of views[J]. Applied Thermal Engineering, 2024, 247: 123075. |
| [6] | Pei P C, Xu Y M, Wang M K, et al. Effects of carbon monoxide on proton exchange membrane fuel cells and elimination techniques[J]. International Journal of Hydrogen Energy, 2024, 69: 1287-1304. |
| [7] | Valdés-López V F, Mason T, Shearing P R, et al. Carbon monoxide poisoning and mitigation strategies for polymer electrolyte membrane fuel cells—a review[J]. Progress in Energy and Combustion Science, 2020, 79: 100842. |
| [8] | Xu J W, Wu Y H, Xiao S Y, et al. Synergic effect investigation of carbon monoxide and other compositions on the high temperature proton exchange membrane fuel cell[J]. Renewable Energy, 2023, 211: 669-680. |
| [9] | Pei P, Wang M, Chen D, et al. Key technologies for polymer electrolyte membrane fuel cell systems fueled impure hydrogen[J]. Progress in Natural Science: Materials International, 2020, 30(6): 751-763. |
| [10] | Das S K, Reis A, Berry K J. Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell[J]. Journal of Power Sources, 2009, 193(2): 691-698. |
| [11] | Chen C Y, Lai W H, Chen Y K, et al. Characteristic studies of a PBI/H3PO4 high temperature membrane PEMFC under simulated reformate gases[J]. International journal of hydrogen energy, 2014, 39(25): 13757-13762. |
| [12] | Zhang J, Zhang C Z, Li J, et al. Multi-perspective analysis of CO poisoning in high-temperature proton exchange membrane fuel cell stack via numerical investigation[J]. Renewable Energy, 2021, 180: 313-328. |
| [13] | Xu J W, Xiao S Y, Xu X R, et al. Numerical study of carbon monoxide poisoning effect on high temperature PEMFCs based on an elementary reaction kinetics coupled electrochemical reaction model[J]. Applied Energy, 2022, 318: 119214. |
| [14] | Lei G, Zheng H L, Zhang J, et al. Analyzing characteristic and modeling of high-temperature proton exchange membrane fuel cells with CO poisoning effect[J]. Energy, 2023, 282: 128305. |
| [15] | Jeppesen C, Polverino P, Andreasen S J, et al. Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21901-21912. |
| [16] | Zhang Z N, Xia Z X, Huang J C, et al. Water-induced electrode poisoning and the mitigation strategy for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Energy Chemistry, 2022, 69: 569-575. |
| [17] | Niya S M R, Hoorfar M. Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique—a review[J]. Journal of Power Sources, 2013, 240: 281-293. |
| [18] | Darowicki K, Gawel L, Mielniczek M, et al. The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream[J]. Applied Energy, 2020, 279: 115868. |
| [19] | Tang Z P, Huang Q A, Wang Y J, et al. Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2020, 468: 228361. |
| [20] | Lu Y, Zhao C Z, Huang J Q, et al. The timescale identification decoupling complicated kinetic processes in lithium batteries[J]. Joule, 2022, 6(6): 1172-1198. |
| [21] | Xu J W, Zhao Y W, Wu Y H, et al. Experimental investigation on influences of methanol reformate impurities in performances of high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(45): 17261-17276. |
| [22] | Bevilacqua N, Schmid M A, Zeis R. Understanding the role of the anode on the polarization losses in high-temperature polymer electrolyte membrane fuel cells using the distribution of relaxation times analysis[J]. Journal of Power Sources, 2020, 471: 228469. |
| [23] | Schindler S, Weiß A, Galbiati S, et al. Identification of polarization losses in high-temperature PEM fuel cells by distribution of relaxation times analysis[J]. ECS Transactions, 2016, 75(14): 45-53. |
| [24] | Weiß A, Schindler S, Galbiati S, et al. Distribution of relaxation times analysis of high-temperature PEM fuel cell impedance spectra[J]. Electrochimica Acta, 2017, 230: 391-398. |
| [25] | Yuan H, Dai H F, Wei X Z, et al. Internal polarization process revelation of electrochemical impedance spectroscopy of proton exchange membrane fuel cell by an impedance dimension model and distribution of relaxation times[J]. Chemical Engineering Journal, 2021, 418: 129358. |
| [26] | Heinzmann M, Weber A, Ivers-Tiffée E. Advanced impedance study of polymer electrolyte membrane single cells by means of distribution of relaxation times[J]. Journal of Power Sources, 2018, 402: 24-33. |
| [27] | Heinzmann M, Weber A. Impedance based performance model for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2023, 558: 232540. |
| [28] | Xiao W, Xia Z X, Li H Q, et al. Electrochemical interface optimization toward low oxygen transport resistance in high-temperature polymer electrolyte fuel cells[J]. Energy Technology, 2020, 8(9): 2000085. |
| [29] | Schönleber M, Klotz D, Ivers-Tiffée E. A method for improving the robustness of linear Kramers-Kronig validity tests[J]. Electrochimica Acta, 2014, 131: 20-27. |
| [30] | Wan T H, Saccoccio M, Chen C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRT tools[J]. Electrochimica Acta, 2015, 184: 483-499. |
| [1] | Xuyang LU, Qiang XU, Haopeng KANG, Jian SHI, Zeshui CAO, Liejin GUO. The CO reduction characteristics of magnetite oxygen carriers in chemical looping hydrogen production systems [J]. CIESC Journal, 2025, 76(7): 3286-3294. |
| [2] | Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction [J]. CIESC Journal, 2025, 76(6): 2687-2700. |
| [3] | Lei TANG, Zhenfei WANG, Congli LI, Jiahui YANG, Hao ZHENG, Qi SHI, Jinxiang DONG. CO working capacity and operating conditions of Co-MOF-74 and Mg-MOF-74 [J]. CIESC Journal, 2025, 76(5): 2279-2293. |
| [4] | Yaqing ZANG, Yijun ZHANG, Jinzhao WANG, Qian WANG, Dianqing LI, Junting FENG, Xue DUAN. Low energy consumption preparation of anhydrous calcium chloride from hydrated calcium chloride based on reaction coupling [J]. CIESC Journal, 2024, 75(4): 1508-1518. |
| [5] | Yaowen TAN, Panxing JIANG, Qing DU, Wanqiu YU, Xiaofei WEN, Zhigang ZHAN. Numerical study of the effects of operating voltage on the degradation of membrane electrodes of PEMFC [J]. CIESC Journal, 2024, 75(3): 974-986. |
| [6] | Qiang GUO, Qidong ZHAO, Yonghou XIAO. Preparation of high-purity H2 and CO by efficient separation of CO/H2 using dual-reflux pressure swing adsorption process [J]. CIESC Journal, 2024, 75(11): 4298-4308. |
| [7] | Qun ZHENG, Xuzhao WEI, Lexian DONG, Jihao ZHANG, Libin LEI. Study of the reconstruction method of distribution of relaxation times of electrochemical impedance spectroscopy based on elastic net regularization [J]. CIESC Journal, 2023, 74(12): 4979-4987. |
| [8] | Zhenyu LIU. Origin of low productivity of underground coal gasification: diffusion and reaction in stagnant boundary layer and gasification tunnel [J]. CIESC Journal, 2022, 73(8): 3299-3306. |
| [9] | Xiaoxi WANG, Xiaoyan LI, Baowei WANG. Decomposition of carbon dioxide via dielectric barrier discharge microplasma [J]. CIESC Journal, 2022, 73(3): 1343-1350. |
| [10] | Meng HUO, Xiaowan PENG, Jin ZHAO, Qiuwei MA, Chun DENG, Bei LIU, Guangjin CHEN. COSMO-RS based solvent screening and H2/CO separation experiments for CO absorption by ionic liquids [J]. CIESC Journal, 2022, 73(12): 5305-5313. |
| [11] | Wenli GAO, Zhong XIN. Research on promotion of Fe in Ni/SBA-16 catalyzing CO methanation at low temperature [J]. CIESC Journal, 2022, 73(1): 241-254. |
| [12] | Xuming LIANG, Yongchao SHEN, Dong WEI, Qian GUO, Zhi GAO. Analysis of output characteristics of aluminum-air battery based on DC internal resistance and AC impedance characteristics [J]. CIESC Journal, 2021, 72(8): 4361-4370. |
| [13] | HE Jizhe, LIU Mingyan, XU Yangshuhan. Study on anticorrosive properties of epoxy soybean oil resin coating [J]. CIESC Journal, 2021, 72(2): 1067-1077. |
| [14] | Peican WANG, Lei WAN, Zi'ang XU, Qin XU, Baoguo WANG. Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective [J]. CIESC Journal, 2021, 72(12): 6161-6175. |
| [15] | Hao ZHOU,Qiwei WU,Fangzheng CHENG. Preparation of La0.8Sr0.2Mn1-xCuxO3 by flame spray synthesis method and catalytic performance for CO oxidation [J]. CIESC Journal, 2021, 72(10): 5159-5171. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||