[1] |
PICHE S, SAYYAR R B, JOHNSON D, et al. Nonlinear model predictive control using neural networks[J]. IEEE Control Systems, 2000, 20 (3): 53-62.
|
[2] |
HENSON M A. Nonlinear model predictive control: current status and future directions[J]. Computers & Chemical Engineering, 1998, 23 (2): 187-202.
|
[3] |
RASMUSSEN C E. Gaussian Processes in Machine Learning[M]. Berlin: Springer Berlin Heidelberg, 2004: 63-71.
|
[4] |
WANG X F, CHEN J D, LIU C B, et al. Hybrid modeling of penicillin fermentation process based on least square support vector machine[J]. Chemical Engineering Research and Design, 2010, 88 (4): 415-420.
|
[5] |
ZHU Y C, XU Z H. A method of LPV model identification for control[J]. IFAC Proceedings Volumes (IFAC-Papers Online), 2008, 17 (1): 5018-5023.
|
[6] |
BAMIEH B, GIARRE L. Identification of linear parameter varying models[J]. International Journal of Robust and Nonlinear Control, 2002, 12 (9): 841-853.
|
[7] |
LEE L H, POOLLA K. Identification of linear parameter varying systems using nonlinear programming[J]. Journal of Dynamic Systems, Measurement, and Control, 1999, 121 (1): 71-78.
|
[8] |
JOHANSEN T A, FOSS B A. Multiple model approaches to modelling and control[J]. International Journal of Control, 1999, 72 (7/8): 575-575.
|
[9] |
XU Z H, ZHAO J, QIAN J X, et al. Nonlinear MPC using an identified LPV model[J]. Industrial & Engineering Chemistry Research, 2009, 48 (6): 3043-3051.
|
[10] |
JIN X, HUANG B, SHOOK D S. Multiple model LPV approach to nonlinear process identification with EM algorithm[J]. Journal of Process Control, 2011, 21 (1): 182-193.
|
[11] |
JIN X, WANG S Y, HUANG B, et al. Multiple model based LPV soft sensor development with irregular/missing process output measurement[J]. Control Engineering Practice, 2012, 20 (2): 165-172.
|
[12] |
MCLACHLAN G J, KRISHNAN T. The EM algorithm and extensions[J]. Biometrics, 2008, 15 (1):154-156.
|
[13] |
CHEN L, TULSYAN A, HUANG B, et al. Multiple model approach to nonlinear system identification with an uncertain scheduling variable using EM algorithm[J]. Journal of Process Control, 2013, 23 (10): 1480-1496.
|
[14] |
KHATIBISEPEHR S, HUANG B. Dealing with irregular data in soft sensors: Bayesian method and comparative study[J]. Industrial & Engineering Chemistry Research, 2008, 47 (22): 8713-8723.
|
[15] |
DENG J, HUANG B. Identification of nonlinear parameter varying systems with missing output data[J]. AIChE Journal, 2012, 58 (11): 3454-3467.
|
[16] |
LJUNG L. System Identification: Theory for the User[M]. New Jersey: Birkhäuser Boston, 1987: 163-173.
|
[17] |
HUANG J Y, JI G L, ZHU Y C, et al. Identification of multi-model LPV models with two scheduling variables[J]. Journal of Process Control, 2012, 22 (7): 1198-1208.
|
[18] |
DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1977, 39 (1):1-38.
|
[19] |
HUANG Y L, LOU H H, GONG J P, et al. Fuzzy model predictive control[J]. IEEE Transactions on Fuzzy Systems, 2000, 8 (6): 665-678.
|
[20] |
MORNINGRED J D, PADEN B E, SEBORG D E, et al. An adaptive nonlinear predictive controller[J]. Chemical Engineering Science, 1992, 47 (4): 755-762.
|