[1] |
VERDULT V, VERHAEGEN M. Subspace identification of multivariable linear parameter-varying systems[J]. Automatica, 2002, 38(5):805-814.
|
[2] |
TOTH R, HEUBERGER P S C, HOF P M J V D. Asymptotically optimal orthonormal basis functions for LPV system identification[J]. Automatica, 2009, 45(6):1359-1370.
|
[3] |
ZHAO Y, HUANG B, SU H Y, et al. Prediction error method for identification of LPV models[J]. Journal of Process Control, 2012, 22(1):180-193.
|
[4] |
TEHRANI E S, KEARNEY R E. A non-parametric linear parameter varying approach for identification of linear time-varying systems[J]. IFAC-Papers Online, 2015, 48(28):733-738.
|
[5] |
HOFFMANN C, WERNER H. A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations[J]. IEEE Transactions on Control Systems Technology, 2015, 23(2):416-433.
|
[6] |
ZHAO P, NAGAMUNE R. Switching LPV controller design under uncertain scheduling parameters[J]. Automatica, 2017, 76:243-250.
|
[7] |
SHAMMA J S, ATHANS M. Guaranteed properties of gain scheduled control for linear parameter-varying plants[J]. Automatica, 1991, 27(3):559-564.
|
[8] |
ZHU Y C, XU Z H. A method of LPV model identification for control[J]. IFAC Proceedings Volumes, 2008, 17(1):5018-5023.
|
[9] |
XU Z H, ZHAO J, QIAN J X, et al. Nonlinear MPC using an identified LPV model[J]. Industrial & Engineering Chemistry Research, 2009, 48(6):3043-3051.
|
[10] |
JIN X, HUANG B, SHOOK D S. Multiple model LPV approach to nonlinear process identification with EM algorithm[J]. Journal of Process Control, 2011, 21(1):182-193.
|
[11] |
YANG X Q, HUANG B, GAO H J. A direct maximum likelihood optimization approach to identification of LPV time-delay systems[J]. Journal of the Franklin Institute, 2016, 353(8):1862-1881.
|
[12] |
GOODFELLOW L, BENGIO Y, COURVILLE A. Deep Learning[M]. Massachusetts:The MIT Press, 2016:54-57.
|
[13] |
ATTIAS H. A variational Bayesian framework for graphical models[J]. International Conference on Neural Information Processing Systems, 1999, 12:209-215.
|
[14] |
YANG X Q, YIN S. Variational Bayesian inference for FIR models with randomly missing measurements[J]. IEEE Transactions on Industrial Electronics, 2016, 64(5):1-9.
|
[15] |
ZHAO Y J, FATEHI A, HUANG B. Robust estimation of ARX models with time varying time delays using variational Bayesian approach[J]. IEEE Transactions on Cybernetics, 2017, 99:1-11.
|
[16] |
MA Z, RANA P K, TAGHIA J, et al. Bayesian estimation of Dirichlet mixture model with variational inference[J]. Pattern Recognition, 2014, 47(9):3143-3157.
|
[17] |
ALA-LUHTALA J, SARKKA S, PICHE R. Gaussian filtering and variational approximations for Bayesian smoothing in continuousdiscrete stochastic dynamic systems[J]. Signal Processing, 2015, 111:124-136.
|
[18] |
BACHNAS A A, TOTH R, LUDLAGE J H A, et al. A review on datadriven linear parameter-varying modeling approaches:a high-purity distillation column case study[J]. Journal of Process Control, 2014, 24(4):272-285.
|
[19] |
LU Y J, KHATIBISEPEHR S, HUANG B. A variational Bayesian approach to identification of switched ARX models[J]. IEEE Conference on Decision and Control, 2014, 2015:2542-2547.
|
[20] |
HUANG J Y, JI G L, ZHU Y C, et al. Identification of multi-model LPV models with two scheduling variables[J]. Journal of Process Control, 2012, 22(7):1198-1208.
|
[21] |
YOU J, LU J G, ZHU Y C, et al. Identification of multimodel LPV models with asymmetric Gaussian weighting function[J]. Journal of Applied Mathematics, 2013, 2013(2):1-12.
|
[22] |
YOU J, YANG Q M, LU J G, et al. Identification of LPV models with non-uniformly spaced operating points by using asymmetric Gaussian weights[J]. Chinese Journal of Chemical Engineering, 2014, 22(6):795-798.
|
[23] |
BERNARDO J M, BAYARRI M J, BERGER J O, et al. The variational Bayesian EM algorithm for incomplete data:with application to scoring graphical model structures[J]. Bayesian Statistics, 2003, 78(78):417-429.
|
[24] |
LU Y J, HUANG B, KHATIBISEPEHR S. A variational Bayesian approach to robust identification of switched ARX Models[J]. IEEE Transactions on Cybernetics, 2017, 46(12):3195-3208.
|
[25] |
LU Y J, HUANG B. Robust multiple-model LPV approach to nonlinear process identification using mixture t distributions[J]. Journal of Process Control, 2014, 24(9):1472-1488.
|
[26] |
TAKEKAWA T, FUKAI T. A novel view of the variational Bayesian clustering[J]. Neurocomputing, 2009, 72(13/14/15):3366-3369.
|
[27] |
CHEN L, TULSYAN A, HUANG B, et al. Multiple model approach to nonlinear system identification with an uncertain scheduling variable using EM algorithm[J]. Journal of Process Control, 2013, 23(10):1480-1496.
|
[28] |
DENG J, HUANG B. Identification of nonlinear parameter varying systems with missing output data[J]. AIChE Journal, 2012, 58(11):3454-3467.
|
[29] |
XIONG W L, YANG X Q, HUANG B, et al. Multiple-model based linear parameter varying time-delay system identification with missing output data using an expectation-maximization algorithm[J]. Industrial & Engineering Chemistry Research, 2014, 53(27):11074-11083.
|
[30] |
YANG X Q, YIN S. Robust global identification and output estimation for LPV dual-rate systems subjected to random output timedelays[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6):2876-2885.
|