[1] |
YAN Z, HUANG B L, YAO Y. Multivariate statistical process monitoring of batch-to-batch startups [J]. AIChE Journal, 2015, 61 (11): 3719-3727.
|
[2] |
LUO L, BAO S, MAO J, et al. Phase partition and phase-based process monitoring methods for multiphase batch processes with uneven durations [J]. Industrial & Engineering Chemistry Research, 2015, 55 (7): 2035-2048.
|
[3] |
王亚君, 孙福明. 基于多动态核聚类的间歇过程在线监控 [J]. 化工学报, 2014, 65 (12): 4905-4913.WANG Y J, SUN F M. Multiple dynamic kernel clustering based online monitoring for batch processes [J]. CIESC Journal, 2014, 65 (12): 4905-4913.
|
[4] |
LV Z, YAN X, JIANG Q. Batch process monitoring based on just-in-time learning and multiple-subspace principal component analysis [J]. Chemometrics & Intelligent Laboratory Systems, 2014, 137 (20):128-139.
|
[5] |
DONG W W, YAO Y, GAO F R. Phase analysis and identification method for multiphase batch processes with partitioning multi-way principal component analysis (MPCA) model [J]. Chinese Journal of Chemical Engineering, 2012, 20 (6): 1121-1127.
|
[6] |
HU Y, MA H, SHI H. Enhanced batch process monitoring using just-in-time-learning based kernel partial least squares [J]. Chemometrics & Intelligent Laboratory Systems, 2013, 123 (3):15-27.
|
[7] |
ZHOU Z, WEN C, YANG C. Fault detection using random projections and k-nearest neighbor rule for semiconductor manufacturing processes [J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28 (1): 70-79.
|
[8] |
WAN J, MARJANOVIC O, LENNOX B. Uneven batch data alignment with application to the control of batch end-product quality [J]. ISA Transactions, 2014, 53 (2): 584-590.
|
[9] |
TAYLOR J, ZHOU X, ROUPHAIL N M, et al. Method for investigating intradriver heterogeneity using vehicle trajectory data: a dynamic time warping approach [J]. Transportation Research Part B: Methodological, 2015, 73 (2015): 59-80.
|
[10] |
GONZáLEZMARTíNEZ J M, VITALE R, NOORD O E D, et al. Effect of synchronization on bilinear batch process modeling [J]. Industrial & Engineering Chemistry Research, 2014, 53 (53): 4339-4351.
|
[11] |
KASSIDAS A, MACGREGOR J F, TAYLOR P A. Synchronization of batch trajectories using dynamic time warping [J]. AIChE Journal, 1998, 44 (4): 864-875.
|
[12] |
GONZáLEZ-MARTíNEZ J M, FERRER A, WESTERHUIS J A. Real-time synchronization of batch trajectories for on-line multivariate statistical process control using dynamic time warping [J]. Chemometrics and Intelligent Laboratory Systems, 2011, 105 (2): 195-206.
|
[13] |
DAI C, WANG K, JIN R. Monitoring profile trajectories with dynamic time warping alignment [J]. Quality and Reliability Engineering International, 2014, 30 (6): 815-827.
|
[14] |
BORK C, NG K, LIU Y, et al. Chromatographic peak alignment using derivative dynamic time warping [J]. Biotechnology Progress, 2013, 29 (2): 394-402.
|
[15] |
ZHANG Y, EDGAR T F. A robust dynamic time warping algorithm for batch trajectory synchronization[C]//2008 American Control Conference. IEEE, 2008: 2864-2869.
|
[16] |
ZHANG Y, LU B, EDGAR T F. Batch trajectory synchronization with robust derivative dynamic time warping [J]. Industrial & Engineering Chemistry Research, 2013, 52 (35): 12319-12328.
|
[17] |
LI Y, WEN C L, XIE Z, et al. Synchronization of batch trajectory based on multi-scale dynamic time warping [C]//Machine Learning and Cybernetics, 2003 International Conference on. IEEE, 2003, 4: 2403-2408.
|
[18] |
BARBON S, GUIDO R C, VIEIRA L S, et al. Wavelet-based dynamic time warping [J]. Journal of Computational and Applied Mathematics, 2009, 227 (2): 271-287.
|
[19] |
LEE S, KIM J. Discrete wavelet transform-based denoising technique for advanced state-of-charge estimator of a lithium-ion battery in electric vehicles [J]. Energy, 2015, 83: 462-473.
|
[20] |
LI F, CHURCH G, JANAKIRAM M, et al. Fault detection for batch monitoring and discrete wavelet transforms [J]. Quality & Reliability Engineering International, 2011, 27 (8):999-1008.
|
[21] |
WANG L, LI B, TIAN L F. Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients [J]. Information Fusion, 2014, 19: 20-28.
|
[22] |
LU B, XU S, STUBER J, et al. Constrained selective dynamic time warping of trajectories in three dimensional batch data [J]. Chemometrics and Intelligent Laboratory Systems, 2016, 159: 138-150.
|
[23] |
RAMAKER H J, SPRANG E N M V, WESTERHUIS J A, et al. Dynamic time warping of spectroscopic BATCH data [J]. Analytica Chimica Acta, 2003, 498 (1-2):133-153.
|
[24] |
WANG Z, BIAN S, LEI M, et al. Feature extraction and classification of load dynamic characteristics based on lifting wavelet packet transform in power system load modeling [J]. International Journal of Electrical Power & Energy Systems, 2014, 62: 353-363.
|
[25] |
GUNTHER J C, BACLASKI J, SEBORG D E, et al. Pattern matching in batch bioprocesses-comparisons across multiple products and operating conditions [J]. Computers & Chemical Engineering, 2009, 33 (1): 88-96.
|
[26] |
YANG C, HOU J. Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine [J]. Neurocomputing, 2016, 190:117-123.
|
[27] |
LV Z, JIANG Q, YAN X. Batch process monitoring based on multisubspace multiway principal component analysis and time-series Bayesian inference [J]. Industrial & Engineering Chemistry Research, 2014, 53 (15): 6457-6466.
|
[28] |
BIROL G, ÜNDEY C, CINAR A. A modular simulation package for fed-batch fermentation: penicillin production [J]. Computers & Chemical Engineering, 2002, 26 (11): 1553-1565.
|
[29] |
张子羿, 胡益, 侍洪波. 一种基于聚类方法的多阶段间歇过程监控方法 [J]. 化工学报, 2013, 64 (12): 4522-4528.ZHANG Z Y, HU Y, SHI H B. Multi-stage batch process monitoring based on a clustering method [J]. CIESC Journal, 2013, 64 (12): 4522-4528.
|
[30] |
LI S, WEN J. A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform [J]. Energy and Buildings, 2014, 68: 63-71.
|
[31] |
DHOKA M, KADAM J. Digital watermarking for medical images using biorthogonal wavelet filters and transformed watermark embedding [J]. International Journal of Advanced Computer Research, 2014, 4 (2): 705-712.
|