[1] |
AKASH B A, JABER J O. Characterization of shale oil as compared to crude oil and some refined petroleum products[J]. Energy Sources, 2003, 25(12):1171-1182.
|
[2] |
GWYN J E. Oil from shale as a viable replacement of depleted crude reserves:processes and challenges[J]. Fuel Processing Technology, 2001, 70(1):27-40.
|
[3] |
刘招君, 董清水, 叶松青, 等. 中国油页岩资源现状[J]. 吉林大学学报(地球科学版), 2006, 36(6):869-876. LIU Z J, DONG Q S, DONG S Q, et al. The situation of oil shale resources in China[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6):869-876.
|
[4] |
NA J G, IM C H, CHUNG S H, et al. Effect of oil shale retorting temperature on shale oil yield and properties[J]. Fuel, 2012, 95(1):131-135.
|
[5] |
YUE C T, LIU Y, MA Y, et al. Influence of retorting conditions on the pyrolysis of Yaojie oil shale[J]. Oil Shale, 2014, 31(1):66-78.
|
[6] |
WILLIAMS P T, CHISHTI H M. Influence of residence time and catalyst regeneration on the pyrolysis-zeolite catalysis of oil shale[J]. Journal of Analytical and Applied Pyrolysis, 2001, 60(2):187-203.
|
[7] |
LAI D G, CHEN Z H, LIN L X, et al. Secondary cracking and upgrading of shale oil from pyrolyzing oil shale over shale ash[J]. Energy & Fuels, 2015, 29(4):2219-2226.
|
[8] |
ZHANG Y, HAN Z N, WU H, et al. Interactive matching between the temperature profile and secondary reactions of oil Shale pyrolysis[J]. Energy & Fuels, 2016, 30(4):2865-2873.
|
[9] |
刘振宇. 煤化学的前沿与挑战:结构与反应[J]. 中国科学:化学, 2014, 44(9):1431-1438. LIU Z Y. The frontier and challenge of coal chemistry:structure and reaction[J]. Scientia Sinica Chimica, 2014, 44(9):1431-1438.
|
[10] |
DIECKMANN V, SCHENK H J, HORSFIELD B. Assessing the overlap of primary and secondary reactions by closed-versus open-system pyrolysis of marine kerogens[J]. Journal of Analytical and Applied Pyrolysis, 2000, 56(1):33-46.
|
[11] |
YAN J W, JIANG X M, HAN X X. Study on the characteristics of the oil shale and shale char mixture pyrolysis[J]. Energy & Fuels, 2009, 23(12):5792-5797.
|
[12] |
DUNG N V, WALL G C, KASTL G. Continuous fluidized bed retorting of condor and Stuart oil shales in a 150 mm diameter reactor[J]. Fuel, 1987, 66(3):372-376.
|
[13] |
刘晓生. 页岩灰在油页岩固体热载体流态化干馏中催化作用试验分析[J]. 广东化工, 2013, 40(4):38-39. LIU X S. Experiment analysis of the catalysis function of shale ash in fluidized retorting of oil shale solid heat carrier[J]. Guangdong Chemical Industry, 2013, 40(4):38-39.
|
[14] |
CARTER S D, CITIROGLU M, GALLACHER J, et al. Secondary coking and cracking of shale oil vapor from pyrolysis or hydropyrolysis of a Kentucky Cleveland oil shale in a two-stage reactor[J]. Fuel, 1994, 73(9):1455-1458.
|
[15] |
FAINBERG V, GARBAR A, HETSRONI G. Secondary pyrolysis of the products of the thermal destruction of high-sulfur oil shale[J]. Energy & Fuels, 1997, 11(4):915-919.
|
[16] |
WILLIAMS P T, CHISHTI H M. Two-stage pyrolysis of oil shale using a zeolite catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2000, 55(2):217-234.
|
[17] |
MINKOVA V, RAZVIGOROVA M, BJORNBOM E, et al. Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass[J]. Fuel Processing Technology, 2001, 70(1):53-61.
|
[18] |
HOSOKAI S, KUMABE K, OHSHITA M, et al. Mechanism of decomposition of aromatics over charcoal and necessary condition for maintaining its activity[J]. Fuel, 2008, 87(13/14):2914-2922.
|
[19] |
HOSOKAI S, HAYASHI J, SHIMADA T, et al. Spontaneous generation of tar decomposition promoter in a biomass steam reformer[J]. Chemical Engineering Research and Design, 2005, 83(9):1093-1102.
|
[20] |
GERGOVA K, PETROV N, ESER S. Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis[J]. Carbon, 1994, 32(4):693-702.
|
[21] |
XIONG R, DONG L, YU J, et al. Fundamentals of coal topping gasification:characterization of pyrolysis topping in a fluidized bed reactor[J]. Fuel Processing Technology, 2010, 91(8):810-817.
|
[22] |
JIA Y B, HUANG J J, WANG Y. Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed[J]. Energy & Fuels, 2004, 18(6):1625-1632.
|
[23] |
CALKINS W H, TYLER R J. Coal flash pyrolysis(Ⅱ):Polymethylene compounds in low temperature flash pyrolysis tars[J]. Fuel, 1984, 63(8):1119-1124.
|
[24] |
XU W C, TOMITA A. Effect of temperature on the flash pyrolysis of various coals[J]. Fuel, 1987, 66(5):632-636.
|
[25] |
ALAYA M N, GIRFIS B S, MOURAD W E. Activated carbon from some agricultural wastes under action of one-step steam pyrolysis[J]. Journal of Porous Materials, 2000, 7(4):509-517.
|
[26] |
NAIK D, KARTHIK V, KUMAR V. Kinetic modeling for catalytic cracking of pyrolysis oils with VGO in a FCC unit[J]. Chemical Engineering Science, 2017, 170:790-798.
|
[27] |
RUBEL A M, RIMMER S M, KEOGH R, et al. Effect of process solids on secondary reactions during oil shale retorting[J]. Fuel, 1991, 70(11):1352-1356.
|
[28] |
柏静儒, 林卫生, 潘朔, 等. 油页岩低温热解过程中轻质气体的析出特性[J]. 化工学报, 2015, 66(3):1104-1110. BAI J R, LIN W S, PAN S, et al. Characteristics of light gases evolution during oil shale pyrolysis[J]. CIESC Journal, 2015, 66(3):1104-1110.
|
[29] |
王世宇. 低温煤焦油化学破乳脱水机理的基础研究[D]. 北京:煤炭科学研究总院, 2010. WANG S Y. Preliminary study on the mechanism of water-oil separation by chemical demulsification of low-temperature coal tar[D]. Beijing:China Coal Research Institute, 2010.
|
[30] |
齐伟, 王世宇. 中低温煤焦油模拟蒸馏曲线解析[J]. 洁净煤技术, 2014, 20(4):65-67. QI W, WANG S Y. Simulated distillation curve of medium and low temperature coal tar[J]. Clean Coal Technology, 2014, 20(4):65-67.
|
[31] |
王擎, 许祥成, 迟铭书, 等. 干酪根组成结构及其热解生油特性的红外光谱研究[J]. 燃料化学学报, 2015, 43(10):1158-1166. WANG Q, XU X C, CHI M S, et al. FT-IR study on composition of oil shale kerogen and its pyrolysis oil generation characteristics[J]. Journal of Fuel Chemistry & Technology, 2015, 43(10):1158-1166.
|
[32] |
FOOKES C J R, DUFFY G J, UDAJA P, et al. Mechanisms of thermal alteration of shale oils[J]. Fuel, 1990, 69(9):1142-1144.
|
[33] |
CHEN B, HAN X X, LI Q Y, et al. Study of the thermal conversions of organic carbon of Huadian oil shale during pyrolysis[J]. Energy Conversion and Management, 2016, 127:284-292.
|
[34] |
秦匡宗, 吴肖令. 抚顺油页岩热解成烃机理——固体13C核磁波谱技术的应用[J]. 石油学报, 1990, 6(1):36-44. QIN K Z, WU X L. Hydrocarbon formation mechanism of Fushun oil shale during pyrolysis-a study with solid state 13C NMR spectroscopic techniques[J]. Acta Petrolei Sinica, 1990, 6(1):36-44.
|