1 |
Li D D , Ding L X , Chen H B , et al . Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries[J]. J. Mater. Chem. A, 2014, 2(39): 16617-16622.
|
2 |
Kong D Z , Luo J S , Wang Y L , et al . Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: morphology control and electrochemical energy storage[J]. Adv. Funct. Mater., 2014, 24(24): 3815-3826.
|
3 |
Son I H , Hwan P J , Kwon S , et al . Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density[J]. Nature Communications, 2015, 6(1):8393.
|
4 |
Ko M , Chae S , Jeong S , et al . Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J]. ACS Nano, 2012, 8(8): 8591.
|
5 |
Wu H , Zheng G , Liu N , et al . Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J]. Nano Letters, 2012, 12(2): 904.
|
6 |
Ji J , Ji H , Zhang L L , et al . Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries[J]. Advanced Materials, 2013, 25(33): 4673-4677.
|
7 |
Zhao C , Yu C , Qiu B , et al . Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions[J]. Advanced Materials, 2018, 30(7): 1702486.
|
8 |
Yao W Q , Chen J , Zhan L , et al . Two-dimensional porous sandwich-like C/Si-graphene-Si/C nanosheets for superior lithium storage[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39371-39379.
|
9 |
Fang C C , Deng Y F , Xie Y , et al . The improved electrochemical performance of Si nanoparticle anode material by synergistic strategies of polydopamine and graphene oxide coatings[J]. Journal of Physical Chemistry C, 2015, 119(4): 1720-1728.
|
10 |
何大方, 李丽鲜, 白凤娟, 等 . 结构有序的Si/void/C/graphene纳米复合结构的制备及储锂性能[J]. 化工学报, 2017, 68(9): 3600-3606.
|
|
He D F , Li L X , Bai F J , et al . Design, preparation, and lithium-storage properties of ordered Si/void/C/graphene nanocomposites[J]. CIESC Journal, 2017, 68(9): 3600-3606.
|
11 |
Han Y , Zou J , Li Z , et al . Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries[J]. ACS Nano, 2018, 12(5): 4835-4843.
|
12 |
Li X H , Wu M Q , Feng T T , et al . Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries[J]. RSC Advances, 2017, 7(76): 48286-48293.
|
13 |
Son I H , Park J H , Park S , et al . Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities[J]. Nature Communications, 2017, 8(1): 1561.
|
14 |
孔丽娟, 周晓燕, 范赛英, 等 . 组氨酸功能化石墨烯量子点@纳米硅负极材料的制备及电化学性能研究[J]. 化学学报, 2016, 74(7): 620-628.
|
|
Kong L J , Zhou X Y , Fan S Y , et al . Study on the synthesis and electrichemical performance of histidine-functionalized graphene quantum dots@silicon composite anode material[J]. Acta Chimica Sinica, 2016, 74(7): 620-628.
|
15 |
Liu Z J , Guo P Q , Liu B L , et al . Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode[J]. Applied Surface Science, 2017, 396: 41-47.
|
16 |
An Y L , Fei H F , Zeng G F , et al . Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries[J]. ACS Nano, 2018, 12(5): 4993-5002.
|
17 |
Liang G M , Qin X Y , Zou J S , et al . Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities[J]. Carbon, 2018, 127: 424-431.
|
18 |
Feng J K , Zhang Z , Ci L J , et al . Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 287: 177-183.
|
19 |
Wei S , Hu R Z , Zhang H Y , et al . A long-life nano-silicon anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling[J]. Electrochimica Acta, 2016, 187: 1-10.
|
20 |
Huang R A , Guo Y Z , Chen Z N , et al . An easy and scalable approach to synthesize three-dimensional sandwich-like Si/polyaniline/graphene nanoarchitecture anode for lithium ion batteries[J]. Ceramics International, 2018, 44(4): 4282-4286.
|
21 |
Lin N , Xu T J , Li T Q , et al . Controllable self-assembly of micro-nanostructured Si-embedded graphite/graphene composite anode for high-performance li-Ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39318-39325.
|
22 |
Lee B , Liu T , Sun K K , et al . Submicron silicon encapsulated with graphene and carbon as a scalable anode for lithium-ion batteries[J]. Carbon, 2017, 119: 438-445.
|
23 |
Yue H W , Wang S Y , Yang Z B , et al . Ultra-thick porous films of graphene-encapsulated silicon nanoparticles as flexible anodes for lithium ion batteries[J]. Electrochimica Acta, 2015, 174: 688-695.
|
24 |
Luo Z P , Xiao Q Z , Lei G T , et al . Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries[J]. Carbon, 2016, 98: 373-380.
|
25 |
李海, 吕春祥 . 炭涂层硅/石墨烯纳米复合材料的制备及其储锂性能[J]. 新型炭材料, 2014, 29(4): 295-300.
|
|
Li H , Lyu C X . Preparation and lithium storage performance of a carbon-coated Si/graphene nanocomposite[J]. New Carbon Materials, 2014, 29(4): 295-300.
|
26 |
Chang P , Liu X , Zhao Q , et al . Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31879.
|
27 |
张兴帅, 许笑目, 郭玉忠, 等 . 锂离子电池Si/RGO@PANI三明治纳米结构负极材料的制备与电化学性能[J]. 无机化学学报, 2017, 33(3): 377-382.
|
|
Zhang X S , Xu X M , Guo Y Z , et al . Preparation and electrochemical properties of sandwich-like Si/RGO@PANI nanocomposites as anode for lithium ion battery [J]. Chinese Journal of Inorganic Chemistry, 2017, 33(3): 377-382.
|
28 |
刘超, 文豪, 张楚虹 . 自支撑纳米硅/石墨烯复合纸柔性电极的制备及其电化学性能的研究[J]. 材料导报, 2016, 30(18): 26-29.
|
|
Liu C , Wen H , Zhang C H . Preparation of free-standing flexible nano-silicon/graphene composite paper electrode for lithium-ion batteries[J]. Materials Review, 2016, 30(18): 26-29.
|
29 |
Shang H , Zuo Z C , Yu L , et al . Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion latteries[J]. Advanced Materials, 2018: 1801459.
|
30 |
Zhu C R , Chao D L , Sun J , et al . Enhanced lithium storage performance of CuO nanowires by coating of graphene quantum dots[J]. Advanced Materials Interfaces, 2015, 2(2): 239-245.
|
31 |
Zhang Y T , Zhang K B , Jia K L , et al . Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties[J]. Fuel, 2019, 241: 646-652.
|
32 |
Wang Z L , Xu D , Wang H G , et al . In situ fabrication of porous graphene electrodes for high-performance energy storage[J]. ACS Nano, 2013, 7(3):2422-2430.
|