[1] |
Nissinen T A, Kiros Y, Gasik M, Leskela M. MnCo2O4 preparation by microwave-assisted route synthesis (MARS) and the effect of carbon admixture [J]. Chem. Mater., 2003, 15(26): 4974-4979
|
[2] |
Kim M, Park J N, Kim H, Song S, Lee W H. The preparation of Pt/C catalysts using various carbon materials for the cathode of PEMFC [J]. J. Power Sources, 2006, 163: 93-97
|
[3] |
Dong Y Z, Wu Y M, Liu M J, Li J H. Electrocatalysis on shape-controlled titanium nitride nanocrystals for the oxygen reduction reaction [J].Chem. Sus. Chem., 2013, 6(10): 2016-2021
|
[4] |
Liu M J, Dong Y Z, Wu Y M, Feng H B, Li J H. Titanium nitride nanocrystals on nitrogen-doped graphene as an efficient electrocatalyst for oxygen reduction reaction [J]. Chem. Eur. J., 2013, 19(44): 14781-14786
|
[5] |
Dash T, Nayak B B. Preparation of WC-W2C composites by arc plasma melting and their characterizations [J]. Ceramics International, 2013, 39: 3279-3292
|
[6] |
Ross P N, Stonehart, P. The relation of surface structure to the electrocatalytic activity of tungsten carbide [J]. J. Catal., 1977, 48: 42-59
|
[7] |
Yang J, Xie Y,Wang R H, Jiang B J, Tian C G, Mu G, Yin J, Wang B, Fu H G. Synergistic effect of tungsten carbide and palladium on graphene for promoted ethanol electrooxidation [J]. Appl. Mater. Interfaces, 2013, 5(14): 6571-6579
|
[8] |
Xu C B, Shi M Q, Kang L Z, Ma C A. Novel core-shell Pt/WC@TiO2 electro-catalyst for methanol oxidation [J]. Electrochim. Acta, 2013, 91: 183-186
|
[9] |
Jeon M K, Lee K R, Lee W S, Daimon H, Nakahara A, Woo S I. Investigation of Pt/WC/C catalyst for methanol electro-oxidation and oxygen electro-reduction [J]. J. Power Sources, 2008, 185(2): 927-931
|
[10] |
Liu Y, Mustain W E. Structural and electrochemical studies of Pt clusters supported on high-surface-area tungsten carbide for oxygen reduction [J]. ACS Catal., 2011, 1(3): 212-220
|
[11] |
Chhina H, Campbell S, Kesler O. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells [J]. J. Power Sources, 2008, 179: 50-59
|
[12] |
Ma Chun’an(马淳安), Huang Yun(黄赟), Zhu Yinghong(朱英红), Chen Zhaoyang(陈赵扬), Lin Wenfeng(林文锋). Preparation and characterization of Pt/WC catalyst for oxygen reduction at gas-diffusion electrod [J]. CIESC Journal(化工学报), 2009,60(10): 2633-2638
|
[13] |
Elezovic N R, Babic B M, Ercius P, Radmilovic V R, Vracar L M, Krstajic N V. Synthesis and characterization Pt nanocatalysts on tungsten based supports for oxygen reduction reaction [J]. Applied Catalysis B: Environmental,2012, 125: 390-397
|
[14] |
Nie M, Shen P K, Wu M, Wei Z D, Meng H. A study of oxygen reduction on improved Pt-WC/C electrocatalysts [J] J. Power Sources, 2006, 162: 173-176
|
[15] |
Meng H, Shen P K. Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction [J]. J. Phys. Chem. B, 2005, 109: 22705-22709
|
[16] |
Liang C H, Ding L, Li C, Pang M, Su D S, Li W Z, Wang Y M. Nanostructured WCx/CNTs as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction [J]. Energy Environ. Sci. 2010, 3: 1121-1127
|
[17] |
Wang Y, Song S Q, Maragou V, Shen P K, Tsiakaras P. High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction [J]. Appl. Catal. B- Environ., 2009, 89: 223-228
|
[18] |
Meng H, Shen P K. Novel Pt-free catalyst for oxygen electroreduction [J]. Electrochem. Commun., 2006, 8: 588-594
|
[19] |
Lidorikis E, Ferrari A C. Photonics with multiwall carbon nanotube arrays [J]. ACS Nano, 2009, 3: 1238-1248
|
[20] |
Jin Y. X, Ma C A, Shi M Q, Chu Y Q, Xu Y H, Huang T, Huang Q, Miao Y W. Highly active carbon nanotube-supported bimetallic palladium-iron electrocatalysts for formic acid electro-oxidation[J]. Int. J. Electrochem. Sci., 2012, 7: 3399-3408
|
[21] |
Joo J B, Kim J S, Kim P, Yi J. Simple preparation of tungsten carbide supported on carbon for use as a catalyst support in a methanol electro-oxidation [J]. Mater. Lett., 2008, 62(20):3497-3499
|
[22] |
Cui Z M, Feng L G, Liu C P, Xing W. Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation [J]. J. Power Sources, 2011, 196: 2621- 2626
|
[23] |
Liu Y, Shrestha S, Mustain W E. Synthesis of nanosize tungsten oxide and its evaluation as an electrocatalyst support for oxygen reduction in acid media[J]. ACS Catal., 2012, 2: 456-463
|
[24] |
Poh C K, Lim S H, Tian Z Q, Lai L F, Feng Y P, Shen Z X, Lin J Y. Pt-WxC nano-composites as an efficient electrochemical catalyst for oxygen reduction reaction[J]. Nano Energy, 2013, 2: 28-39
|
[25] |
Pino L, Vita A, Cordaro M, Recupero V, Hegde M S. A comparative study of Pt/CeO2 catalysts for catalytic partial oxidation of methane to syngas for application in fuel cell electric vehicles [J]. Appl.Catal. A, 2003, 243:135-146
|
[26] |
Damjanovic A, Sepa D B. An analysis of the pH dependence of enthalpies and Gibbs energies of activation for O2 reduction at Pt electrodes in acid solutions [J]. Electrochim. Acta, 1990, 35(7): 1157-1162
|
[27] |
Antoine O, Bultel Y, Durand R. Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®[J]. J. Electroanal. Chem., 2001, 499(1): 85-94
|
[28] |
Percival S J, Zhang B. Electrocatalytic reduction of oxygen at single platinum nanowires [J]. J. Phys. Chem. C, 2013, 117(27): 13928- 13935
|
[29] |
Kucernak A, Jiang J H. Mesoporous platinum as a catalyst for oxygen electroreduction and methanol electrooxidation [J]. Chem. Eng. J., 2003, 93(1): 81-90
|
[30] |
Chen S L, Kucernak A. Electrocatalysis under conditions of high mass transport rate: oxygen reduction on single submicrometer-sized Pt particles supported on carbon [J]. J. Phys. Chem. B, 2004 108(10): 3262-3276
|
[31] |
Hsu I J, Kimmel Y C, Dai Y, Chen S, Chen J G. Rotating disk electrode measurements of activity and stability of monolayer Pt on tungsten carbide disks for oxygen reduction reaction [J]. J. Power Sources, 2012, 199: 46-52
|
[32] |
Ammam M, Easton E B. Oxygen reduction activity of binary PtMn/C, ternary PtMnX/C (X = Fe, Co, Ni, Cu, Mo and, Sn) and quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloy catalysts [J]. J. Power Sources, 2013, 236: 311-320
|