CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 777-787.DOI: 10.11949/0438-1157.20190782
• Energy and environmental engineering • Previous Articles Next Articles
Yang LI(),Yang ZHANG(),Xuanlong CHEN,Xun GONG
Received:
2019-07-09
Revised:
2019-12-05
Online:
2020-02-05
Published:
2020-02-05
Contact:
Yang ZHANG
通讯作者:
张扬
作者简介:
李扬(1995—),男,硕士研究生,基金资助:
CLC Number:
Yang LI, Yang ZHANG, Xuanlong CHEN, Xun GONG. Effect of cyclic adsorption performance of calcium-based sorbent on enhanced biomass gasification for hydrogen production[J]. CIESC Journal, 2020, 71(2): 777-787.
李扬, 张扬, 陈宣龙, 龚勋. 钙基吸附剂循环吸附性能对增强式生物质气化制氢的影响研究[J]. 化工学报, 2020, 71(2): 777-787.
Add to citation manager EndNote|Ris|BibTeX
钙基前体 | 载体前体 | 吸附剂粉末 | 吸附剂颗粒 |
---|---|---|---|
CaCO3 | — | CaO | CaOp |
Ca(CH3COO)2?H2O | Mg(CH3COO)2·4H2O | CaMg75 | CaMg75p |
Al(NO3)3·9H2O | CaAl75 | CaAl75p | |
La(CH3COO)3·xH2O | CaLa75 | CaLa75p | |
Y(CH3COO)3·4H2O | CaY75 | CaY75p | |
Nd(CH3COO)3·xH2O | CaNd75 | CaNd75p | |
C8H20O4Si | CaSi75 | CaSi75p |
Table 1 Adsorbent powders and particulates prepared in experiments
钙基前体 | 载体前体 | 吸附剂粉末 | 吸附剂颗粒 |
---|---|---|---|
CaCO3 | — | CaO | CaOp |
Ca(CH3COO)2?H2O | Mg(CH3COO)2·4H2O | CaMg75 | CaMg75p |
Al(NO3)3·9H2O | CaAl75 | CaAl75p | |
La(CH3COO)3·xH2O | CaLa75 | CaLa75p | |
Y(CH3COO)3·4H2O | CaY75 | CaY75p | |
Nd(CH3COO)3·xH2O | CaNd75 | CaNd75p | |
C8H20O4Si | CaSi75 | CaSi75p |
样品 | 工业分析/%(质量,空干基) | 元素分析/%(质量,空干基) | |||||||
---|---|---|---|---|---|---|---|---|---|
水分 | 挥发分 | 灰分 | 固定碳 | 碳 | 氢 | 氮 | 硫 | 氧① | |
烟筋原样 | 7.30 | 66.32 | 16.93 | 9.45 | 33.52 | 5.00 | 2.46 | 0.77 | 34.02 |
Table 2 Analysis of basic characteristics of biomass sample
样品 | 工业分析/%(质量,空干基) | 元素分析/%(质量,空干基) | |||||||
---|---|---|---|---|---|---|---|---|---|
水分 | 挥发分 | 灰分 | 固定碳 | 碳 | 氢 | 氮 | 硫 | 氧① | |
烟筋原样 | 7.30 | 66.32 | 16.93 | 9.45 | 33.52 | 5.00 | 2.46 | 0.77 | 34.02 |
吸附剂粉末 | 比表面积/(m2/g) | 吸附剂颗粒 | 比表面积/(m2/g) |
---|---|---|---|
CaO | 10.49 | CaOp | 9.13 |
CaMg75 | 18.56 | CaMg75p | 14.90 |
CaAl75 | 12.14 | CaAl75p | 8.54 |
CaLa75 | 10.83 | CaLa75p | 5.72 |
CaY75 | 10.51 | CaY75p | 8.72 |
CaNd75 | 8.81 | CaNd75p | 6.06 |
CaSi75 | 22.06 | CaSi75p | 15.82 |
Table 3 Specific surface area of synthetic CaO adsorbents
吸附剂粉末 | 比表面积/(m2/g) | 吸附剂颗粒 | 比表面积/(m2/g) |
---|---|---|---|
CaO | 10.49 | CaOp | 9.13 |
CaMg75 | 18.56 | CaMg75p | 14.90 |
CaAl75 | 12.14 | CaAl75p | 8.54 |
CaLa75 | 10.83 | CaLa75p | 5.72 |
CaY75 | 10.51 | CaY75p | 8.72 |
CaNd75 | 8.81 | CaNd75p | 6.06 |
CaSi75 | 22.06 | CaSi75p | 15.82 |
1 | Florin N H, Harris A T. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents[J]. Chemical Engineering Science, 2008, 63(2): 287-316. |
2 | Zhang Y, Gong X, Zhang B, et al. Potassium catalytic hydrogen production in sorption enhanced gasification of biomass with steam[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4234-4243. |
3 | Herce C, Stendardo S, Cortés C. Increasing CO2 carrying capacity of dolomite by means of thermal stabilization by triggered calcination[J]. Chemical Engineering Journal, 2015, 262: 18-28. |
4 | Kato Y, Harada N, Yoshizawa Y. Kinetic feasibility of a chemical heat pump for heat utilization of high-temperature processes[J]. Applied Thermal Engineering, 1999, 19(3): 239-254. |
5 | Grasa G, González, B, Alonso M, et al. Comparison of CaO-based synthetic CO2 sorbents under realistic calcination conditions[J]. Energy & Fuels, 2007, 21(6): 3560-3562. |
6 | Blamey J, Anthony E J, Wang J, et al. The calcium looping cycle for large-scale CO2 capture[J]. Progress in Energy & Combustion Science, 2010, 36(2): 260-279. |
7 | Liu W Q, An H, Qin C L, et al. Performance enhancement of calcium oxide sorbents for cyclic CO2 capture—a review[J]. Energy & Fuels, 2012, 26(5): 2751-2767. |
8 | Barker R. The reversibility of the reaction CaCO3 CaO+CO2[J]. Journal of Applied Chemistry & Biotechnology, 1973, 23(10): 733–742. |
9 | Barker R. The reactivity of calcium oxide towards carbon dioxide and its use for energy storage[J]. Journal of Applied Chemistry & Biotechnology, 1974, 24(4/5): 221-227. |
10 | Wu S F, Zhu Y Q. Behavior of CaTiO3/nano-CaO as a CO2 reactive adsorbent[J]. Industrial & Engineering Chemistry Research, 2010, 49(6): 2701-2706. |
11 | Liu W Q, Feng B, Wu Y Q, et al. Synthesis of sintering-resistant sorbents for CO2 capture[J]. Environmental Science & Technology, 2010, 44(8): 3093-3097. |
12 | Silaban A, Narcida M, Harrison D P. Calcium acetate as a sorbent precursor for the removal of carbon dioxide from gas streams at high temperature[J]. Resources Conservation & Recycling, 1992, 7(1/2/3): 139-153. |
13 | Gupta H, Fan L S. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas[J]. Industrial & Engineering Chemistry Research, 2002, 41(16): 4035-4042. |
14 | Florin N H, Harris A T. Preparation and characterization of a tailored carbon dioxide sorbent for enhanced hydrogen synthesis in biomass gasifiers[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2191-2202. |
15 | Roesch A, Reddy E P, Smirniotis P G. Parametric study of Cs/CaO sorbents with respect to simulated flue gas at high temperatures[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 6485-6490. |
16 | Li Z S, Cai N S, Huang Y Y, et al. Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent[J]. Energy & Fuels, 2005, 19(4): 1447-1452. |
17 | Ma X T, Li Y J, Shi L, et al. Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process[J]. Applied Energy, 2016, 168: 85-95. |
18 | Qin C L, Yin J J, An H, et al. Performance of extruded particles from calcium hydroxide and cement for CO2 capture[J]. Energy & Fuels, 2011, 26(1): 154-161. |
19 | Manovic V, Wu Y H, He I, et al. Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles[J]. Environmental Science & Technology, 2012, 46(22): 12720-12725. |
20 | Sun J, Liu W Q, Hu Y C, et al. Enhanced performance of extruded-spheronized carbide slag pellets for high temperature CO2 capture[J]. Chemical Engineering Journal, 2016, 285: 293-303. |
21 | Acharya B, Dutta A, Basu P. An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO[J]. International Journal of Hydrogen Energy, 2010, 35(4): 1582-1589. |
22 | Mahishi M R, Goswami D Y. An experimental study of hydrogen production by gasification of biomass in the presence of a CO2 sorbent[J]. International Journal of Hydrogen Energy, 2007, 32(14): 2803-2808. |
23 | Han L, Wang Q H, Yang Y K, et al. Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed[J]. International Journal of Hydrogen Energy, 2011, 36(8): 4820-4829. |
24 | Florin N H, Harris A T. Hydrogen production from biomass coupled with carbon dioxide capture: The implications of thermodynamic equilibrium[J]. International Journal of Hydrogen Energy, 2007, 32(17): 4119-4134. |
25 | Broda M, Manovic V, Imtiaz Q, et al. High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst[J]. Environmental Science & Technology, 2013, 47(11): 6007-6014. |
26 | Dang C X, Yu H, Wang H J, et al. A bi-functional Co-CaO-Ca12Al14O33 catalyst for sorption-enhanced steam reforming of glycerol to high-purity hydrogen[J]. Chemical Engineering Journal, 2016, 286: 329-338. |
27 | Müller C R, Pacciani R, Bohn C D, et al. Investigation of the enhanced water gas shift reaction using natural and synthetic sorbents for the capture of CO2[J]. Industrial & Engineering Chemistry Research, 2009, 48(23): 10284-10291. |
28 | Zhang Y, Gong X, Cheng X L, et al. Performance of synthetic CaO-based sorbent pellets for CO2 capture and kinetic analysis[J]. Fuel, 2018, 232: 205-214. |
29 | Broda M, Manovic V, Anthony E J, et al. Effect of pelletization and addition of steam on the cyclic performance of carbon-templated, CaO-based CO2 sorbents[J]. Environmental Science & Technology, 2014, 48(9): 5322-5328. |
30 | Zhao M, Shi J, Zhong X, et al. A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO2 capture[J]. Energy & Environmental Science, 2014, 7(10): 3291-3295. |
31 | Udomsirichakorn J, Basu P, Salam P A, et al. CaO-based chemical looping gasification of biomass for hydrogen-enriched gas production with in situ CO2, capture and tar reduction[J]. Fuel Processing Technology, 2014, 127(11): 7-12. |
32 | Li B, Yang H P, Wei L Y, et al. Hydrogen production from agricultural biomass wastes gasification in a fluidized bed with calcium oxide enhancing[J]. International Journal of Hydrogen Energy, 2017, 42(8): 4832-4839. |
33 | Wei L Y, Yang H P, Li B, et al. Absorption-enhanced steam gasification of biomass for hydrogen production: effect of calcium oxide addition on steam gasification of pyrolytic volatiles[J].International Journal of Hydrogen Energy, 2014, 39(28): 15416-15423. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[5] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[6] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[7] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[8] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[9] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[10] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[11] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[12] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[13] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[14] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[15] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||