CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2880-2888.DOI: 10.11949/0438-1157.20191428
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Honghui BI(),Shuai JIAO,Feng WEI,Xiaojun HE()
Received:
2019-11-25
Revised:
2020-04-08
Online:
2020-06-05
Published:
2020-06-05
Contact:
Xiaojun HE
通讯作者:
何孝军
作者简介:
毕宏晖(1996—),男,硕士研究生,基金资助:
CLC Number:
Honghui BI, Shuai JIAO, Feng WEI, Xiaojun HE. Preparation of coral-like nitrogen-doped porous carbons and its supercapacitive properties[J]. CIESC Journal, 2020, 71(6): 2880-2888.
毕宏晖, 焦帅, 魏风, 何孝军. 珊瑚状氮掺杂多孔碳的制备及其超电容性能[J]. 化工学报, 2020, 71(6): 2880-2888.
Add to citation manager EndNote|Ris|BibTeX
Samples | Dap/ nm | SBET/ (m2·g-1) | Smic/ (m2·g-1) | Vt/ (cm3·g-1) | Vmic/ (cm3·g-1) |
---|---|---|---|---|---|
CNPC1 | 2.41 | 1523 | 800 | 0.79 | 0.40 |
CNPC2 | 2.52 | 2050 | 868 | 1.13 | 0.45 |
CNPC3 | 3.29 | 1457 | 523 | 1.11 | 0.25 |
Table 1 Pore structure parameters of CNPCs
Samples | Dap/ nm | SBET/ (m2·g-1) | Smic/ (m2·g-1) | Vt/ (cm3·g-1) | Vmic/ (cm3·g-1) |
---|---|---|---|---|---|
CNPC1 | 2.41 | 1523 | 800 | 0.79 | 0.40 |
CNPC2 | 2.52 | 2050 | 868 | 1.13 | 0.45 |
CNPC3 | 3.29 | 1457 | 523 | 1.11 | 0.25 |
Samples | C 1s/ % | O 1s/ % | N 1s/ % | N functional group ratios/%(area) | |||
---|---|---|---|---|---|---|---|
N-6 | N-5 | N-Q | N-O | ||||
CNPC1 | 72.65 | 24.92 | 2.42 | 11.57 | 52.89 | 28.51 | 7.03 |
CNPC2 | 67.94 | 28.58 | 3.48 | 36.49 | 42.82 | 14.37 | 6.32 |
CNPC3 | 66.03 | 30.55 | 3.42 | 21.64 | 29.53 | 33.03 | 15.80 |
Table 2 Contents of carbon, oxygen and nitrogen elements and surface nitrogen-containing functional groups
Samples | C 1s/ % | O 1s/ % | N 1s/ % | N functional group ratios/%(area) | |||
---|---|---|---|---|---|---|---|
N-6 | N-5 | N-Q | N-O | ||||
CNPC1 | 72.65 | 24.92 | 2.42 | 11.57 | 52.89 | 28.51 | 7.03 |
CNPC2 | 67.94 | 28.58 | 3.48 | 36.49 | 42.82 | 14.37 | 6.32 |
CNPC3 | 66.03 | 30.55 | 3.42 | 21.64 | 29.53 | 33.03 | 15.80 |
Fig.8 GCD curves of CNPCs electrodes at 0.05 A·g-1 (a); specific capacitances of CNPCs electrodes at different current densities(b); Ragone plots of CNPCs supercapacitors(c); capacitance retention of CNPC2 electrode at 5 A·g-1 after 10000 cycles(d)
1 | Quiroz-Cardoso O, Oros-Ruiz S, Solis-Gomez A, et al. Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light[J]. Fuel, 2019, 237: 227-235. |
2 | Dou Q Y, Lu Y N, Su L J, et al. A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5 V carbon-based supercapacitor[J]. Energy Storage Mater., 2019, 23: 603-609. |
3 | Xia J S, Zhang N, Chong S K, et al. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor[J]. Green Chem., 2018, 20: 694-700. |
4 | He X J, Xie X Y, Wang J X, et al. From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors[J]. Nanoscale, 2019, 11(14): 6610-6619. |
5 | 禹兴海, 罗齐良, 潘剑, 等. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600. |
Yu X H, Luo Q L, Pan J, et al. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. CIESC Journal, 2019, 70(9): 3590-3600. | |
6 | Liu X G, Ma C D, Li J X, et al. Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors[J]. J. Power Sources, 2019, 412: 1-9. |
7 | Liu Y, Shi Z J, Gao Y F, et al. Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes[J]. ACS Appl. Mater. Interfaces, 2016, 8(42): 28283-28290. |
8 | Yu P F, Liang Y R, Dong H W, et al. Rational synthesis of highly porous carbon from waste bagasse for advanced supercapacitor application[J]. ACS Sustainable Chem. Eng., 2018, 6(11): 15325-15332. |
9 | Zhang Y, Liu S S, Zheng X Y, et al. Biomass organs control the porosity of their pyrolyzed carbon[J]. Adv. Funct. Mater., 2017, 27(3): 1604687. |
10 | 后振中, 彭龙贵, 李颖, 等. 分级多孔聚吡咯膜的界面自组装合成与电化学电容性[J]. 化工学报, 2018, 69 (9): 4121-4128. |
Hou Z Z, Peng L G, Li Y, et al. Interfacial self-assembly synthesis and electrochemical capacitance of hierarchical porous polypyrrole films[J]. CIESC J., 2018, 69 (9): 4121-4128. | |
11 | Zhao G Y, Chen C, Yu D F, et al. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors[J]. Nano Energy, 2018, 47: 547-555. |
12 | Zhang Q, Han K H, Li S J, et al. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors[J]. Nanoscale, 2018, 10(5): 2427-2437. |
13 | Dai S G, Liu Z, Zhao B, et al. A high-performance supercapacitor electrode based on N-doped porous graphene[J]. J. Power Sources, 2018, 387: 43-48. |
14 | Lv B J, Li P P, Liu Y, et al. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes[J]. Appl. Surf. Sci., 2018, 437: 169-175. |
15 | Wang B, Wang Y H, Peng Y Y, et al. Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage[J]. Chem. Eng. J., 2018, 348: 850-859. |
16 | Dong S A, He X J, Zhang H F, et al. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors[J]. J. Mater. Chem. A, 2018, 6(33): 15954-15960. |
17 | Li X G, Guan B Y, Gao S Y, et al. A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction[J]. Energy Environ. Sci., 2019, 12(2): 648-655. |
18 | Shao J Q, Song M Y, Wu G, et al. 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in-situ coating[J]. Energy Storage Mater., 2018, 13: 57-65. |
19 | Yu S K, Sun N, Hu L F, et al. Self-template and self-activation synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors[J]. J. Power Sources, 2018, 405: 132-141. |
20 | Lin G X, Ma R G, Zhou Y, et al. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction[J]. Electrochim. Acta, 2018, 261: 49-57. |
21 | Liang C, Liang S, Xia Y, et al. Synthesis of hierarchical porous carbon from metal carbonates towards high-performance lithium storage[J]. Green Chem., 2018, 20(7): 1484-1490. |
22 | Pan L, Wang Y X, Hu H, et al. 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors[J]. Carbon, 2018, 134: 345-353. |
23 | Zou K X, Deng Y F, Chen J P, et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors[J]. J. Power Sources, 2018, 378: 579-588. |
24 | Zhang W, Yu C Y, Chang L B, et al. Three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors[J]. Electrochim. Acta, 2018, 282: 642-652. |
25 | Zuo S X, Chen J, Liu W J, et al. Preparation of 3D interconnected hierarchical porous N-doped carbon nanotubes[J]. Carbon, 2018, 129: 199-206. |
26 | Wei F, He X J, Zhang H F, et al. Crumpled carbon nanonets derived from anthracene oil for high energy density supercapacitor[J]. J. Power Sources, 2019, 428: 8-12. |
27 | Dong X M, Jin H L, Wang R Y, et al. High volumetric capacitance, ultralong life supercapacitors enabled by eaxberry-derived hierarchical porous carbon materials[J]. Adv. Energy Mater., 2018, 8(11): 1702695. |
28 | Zhao Y Q, Lu M, Tao P Y, et al. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors[J]. J. Power Sources, 2016, 307: 391-400. |
29 | 张璇, 杨佳兴, 金秋阳, 等. 超盐环境下含氮碳气凝胶的制备及其在超级电容器中的应用[J]. 化工学报, 2019, 70(7): 2748-2757. |
Zhang X, Yang J X, Jin Q Y, et al. Preparation of nitrogen-doped carbon aerogel under hypersaline condition and its application for supercapacitors[J]. CIESC Journal, 2019, 70(7): 2748-2757. | |
30 | Wang Q, Qin B, Zhang X H, et al. Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors[J]. J. Mater. Chem. A, 2018, 6(40): 19653-19663. |
31 | Wang T, Sun Y, Zhang L L, et al. Space-confined polymerization: controlled fabrication of nitrogen-doped polymer and carbon nicrospheres with refined hierarchical architectures[J]. Adv. Mater., 2019, 31(16): 1807876. |
32 | He H N, Huang D, Tang Y G, et al. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage[J]. Nano Energy, 2019, 57: 728-736. |
33 | 贺新福, 龙雪颖, 吴红菊, 等. 氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能[J]. 化工学报, 2019, 70(6): 2308-2315. |
He X F, Long X Y, Wu H J, et al. Synthesis of N-doped graphene/porous carbon composite and its electrocatalytic performance on oxygen reduction reaction[J]. CIESC Journal, 2019, 70(6): 2308-2315. | |
34 | Zhang Y T, Zhang K B, Ren S Z, et al. 3D nanoflower-like composite anode of α-Fe2O3/coal-based graphene for lithium-ion batteries[J]. J. Alloy. Compd., 2019, 792: 828-834. |
35 | Liu S M, Liang Y R, Zhou W, et al. Large-scale synthesis of porous carbon via one-step CuCl2 activation of rape pollen for high-performance supercapacitors[J]. J. Mater. Chem. A, 2018, 6(25): 12046-12055. |
36 | Zhu Q L, Pachfule P, Strubel P, et al. Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage[J]. Energy Storage Mater., 2018, 13: 72-79. |
37 | Wan L, Song P, Liu J X, et al. Facile synthesis of nitrogen self-doped hierarchical porous carbon derived from pine pollen via MgCO3 activation for high-performance supercapacitors[J]. J. Power Sources, 2019, 438: 227013. |
38 | Zhang Y T, Zhang K B, Jia K L, et al. Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties[J]. Fuel, 2019, 241: 646-652. |
39 | 魏风, 毕宏晖, 焦帅, 等. 超级电容器用相互连接的类石墨烯纳米片[J]. 物理化学学报, 2020, 36(2): 1903043. |
Wei F, Bi H H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Phys.-Chim. Sin., 2020, 36(2): 1903043. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[12] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[15] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||