CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1807-1816.DOI: 10.11949/0438-1157.20211639
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yuzhe LIU(),Chengcai LI,Lin LI(),Shaohui WANG,Peihui LIU,Tonghua WANG()
Received:
2021-11-17
Revised:
2022-01-12
Online:
2022-04-25
Published:
2022-04-05
Contact:
Lin LI,Tonghua WANG
通讯作者:
李琳,王同华
作者简介:
刘宇喆(1991—),男,博士研究生,基金资助:
CLC Number:
Yuzhe LIU, Chengcai LI, Lin LI, Shaohui WANG, Peihui LIU, Tonghua WANG. Structure-property relationship between microstructure of activated carbon and supercapacitor performance[J]. CIESC Journal, 2022, 73(4): 1807-1816.
刘宇喆, 李成才, 李琳, 王少辉, 刘培慧, 王同华. 活性炭的微结构与超级电容器性能的构效关系[J]. 化工学报, 2022, 73(4): 1807-1816.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Activated carbons prepared by different activation methods: N2 adsorption isotherms (a), micropore size distribution (the inset shows the distribution of mesopore) (b), and pore volume in different pore size range (c)
Samples | SBET/(m2·g-1) | Vtot/(cm3·g-1) | Vmic/(cm3·g-1) | Vmeso/(cm3·g-1) | (Vmic/ Vtot)/% | (Vmeso/Vtot)/% |
---|---|---|---|---|---|---|
ZM-C | 905 | 0.720 | 0.153 | 0.378 | 21.24 | 52.48 |
ZM-P | 1453 | 1.027 | 0.260 | 0.438 | 25.32 | 42.65 |
ZM-K | 1702 | 0.827 | 0.576 | 0.153 | 69.62 | 18.49 |
ZM-P-K | 2070 | 1.010 | 0.737 | 0.170 | 72.97 | 16.83 |
ZM-P-C | 1478 | 1.088 | 0.233 | 0.501 | 21.42 | 46.05 |
Table 1 The pore structure of activated carbon prepared by different activation methods
Samples | SBET/(m2·g-1) | Vtot/(cm3·g-1) | Vmic/(cm3·g-1) | Vmeso/(cm3·g-1) | (Vmic/ Vtot)/% | (Vmeso/Vtot)/% |
---|---|---|---|---|---|---|
ZM-C | 905 | 0.720 | 0.153 | 0.378 | 21.24 | 52.48 |
ZM-P | 1453 | 1.027 | 0.260 | 0.438 | 25.32 | 42.65 |
ZM-K | 1702 | 0.827 | 0.576 | 0.153 | 69.62 | 18.49 |
ZM-P-K | 2070 | 1.010 | 0.737 | 0.170 | 72.97 | 16.83 |
ZM-P-C | 1478 | 1.088 | 0.233 | 0.501 | 21.42 | 46.05 |
Samples | ID1/ IG | ID2/ IG | ID3/ IG |
---|---|---|---|
ZM-C | 1.12 | 0.41 | 0.55 |
ZM-P | 1.07 | 0.40 | 0.44 |
ZM-P-C | 1.18 | 0.34 | 0.45 |
ZM-K | 1.97 | 0.46 | 1.36 |
ZM-P-K | 1.47 | 0.49 | 0.99 |
Table 2 Intensity ratio of ID1, ID2, ID3, and IG of Raman fitting peaks
Samples | ID1/ IG | ID2/ IG | ID3/ IG |
---|---|---|---|
ZM-C | 1.12 | 0.41 | 0.55 |
ZM-P | 1.07 | 0.40 | 0.44 |
ZM-P-C | 1.18 | 0.34 | 0.45 |
ZM-K | 1.97 | 0.46 | 1.36 |
ZM-P-K | 1.47 | 0.49 | 0.99 |
Samples | Elements content/%(atom) | O 1s distribution/%(atom) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | N | O | P | O-Ⅰ | O-Ⅱ | O-Ⅲ | O-Ⅳ | O-Ⅴ | |
ZM-C | 92.29 | 0.99 | 6.72 | — | — | 27.94 | — | 44.73 | 27.33 |
ZM-P | 90.12 | 0.20 | 8.24 | 1.44 | 12.80 | — | 56.60 | 17.46 | 11.39 |
ZM-K | 90.47 | 0.61 | 8.92 | — | — | 51.06 | — | 34.60 | 14.34 |
ZM-P-K | 89.14 | 0.51 | 9.66 | 0.69 | 10.84 | 28.74 | 41.84 | 12.85 | 5.73 |
ZM-P-C | 94.53 | 0.28 | 4.72 | 0.47 | 11.78 | 26.80 | 35.83 | 16.95 | 8.63 |
Table 3 The element composition and types of O functional groups of activated carbon by different activation methods
Samples | Elements content/%(atom) | O 1s distribution/%(atom) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | N | O | P | O-Ⅰ | O-Ⅱ | O-Ⅲ | O-Ⅳ | O-Ⅴ | |
ZM-C | 92.29 | 0.99 | 6.72 | — | — | 27.94 | — | 44.73 | 27.33 |
ZM-P | 90.12 | 0.20 | 8.24 | 1.44 | 12.80 | — | 56.60 | 17.46 | 11.39 |
ZM-K | 90.47 | 0.61 | 8.92 | — | — | 51.06 | — | 34.60 | 14.34 |
ZM-P-K | 89.14 | 0.51 | 9.66 | 0.69 | 10.84 | 28.74 | 41.84 | 12.85 | 5.73 |
ZM-P-C | 94.53 | 0.28 | 4.72 | 0.47 | 11.78 | 26.80 | 35.83 | 16.95 | 8.63 |
Fig.5 CV curves of ZM-P-K at different voltage windows of 50 mV·s-1 (a); CV curves at 5 mV·s-1 (b); GCD curves at 0.1 A·g-1 (c); Specific capacitance and capacitance retention at different scanning speed (d); Cyclic stability of activated carbon by different activation method (e); Nyquist plots (f)
1 | Taer E. Activated carbon electrode made from coconut husk waste for supercapacitor application[J]. International Journal of Electrochemical Science, 2018: 12072-12084. |
2 | Heidarinejad Z, Dehghani M H, Heidari M, et al. Methods for preparation and activation of activated carbon: a review[J]. Environmental Chemistry Letters, 2020, 18(2): 393-415. |
3 | Al Subhi H, Adeeb M S, Pandey M, et al. Effect of different activation agents on the pollution removal efficiency of date seed activated carbon: process optimization using response surface methodology[J]. Applied Water Science, 2020, 10(7): 1-9. |
4 | 王浩, 李琳, 王春雷, 等. 聚酰亚胺基高比表面活性炭及其电化学性能研究[J]. 无机材料学报, 2017, 32(11): 1181-1187. |
Wang H, Li L, Wang C L, et al. Preparation and electrochemical performance of polyimide-based activated carbons with high surface area[J]. Journal of Inorganic Materials, 2017, 32(11): 1181-1187. | |
5 | Liu B, Du C, Chen J J, et al. Preparation of well-developed mesoporous activated carbon fibers from plant pulp fibers and its adsorption of methylene blue from solution[J]. Chemical Physics Letters, 2021, 771: 138535. |
6 | Merzougui Z, Azoudj Y, Bouchemel N, et al. Effect of activation method on the pore structure of activated carbon from date pits application to the treatment of water[J]. Desalination and Water Treatment, 2011, 29(1/2/3): 236-240. |
7 | Sun P, Zhang S N, Bi H, et al. Tuning nitrogen species and content in carbon materials through constructing variable structures for supercapacitors[J]. Journal of Inorganic Materials, 2021, 36(7): 766. |
8 | Luo X Y, Chen Y, Mo Y. A review of charge storage in porous carbon-based supercapacitors[J]. New Carbon Materials, 2021, 36(1): 49-68. |
9 | Endo M, Takeda T, Kim Y J, et al. High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons[J]. Carbon Letters, 2001,1(3): 117-128. |
10 | Kim K S, Park S J. Synthesis and high electrochemical capacitance of N-doped microporous carbon/carbon nanotubes for supercapacitor[J]. Journal of Electroanalytical Chemistry, 2012, 673: 58-64. |
11 | Gandla D, Wu X D, Zhang F M, et al. High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels[J]. ACS Omega, 2021, 6(11): 7615-7625. |
12 | 许伟佳, 邱大平, 刘诗强, 等. 用于高性能超级电容器电极的栓皮栎基多孔活性炭的制备[J]. 无机材料学报, 2019, 34(6): 625-632. |
Xu W J, Qiu D P, Liu S Q, et al. Preparation of cork-derived porous activated carbon for high performance supercapacitors [J]. Journal of Inorganic Materials, 2019, 34(6): 625-632. | |
13 | Afif A, Rahman S M, Tasfiah Azad A, et al. Advanced materials and technologies for hybrid supercapacitors for energy storage — a review[J]. Journal of Energy Storage, 2019, 25: 100852. |
14 | 左宋林. 磷酸活化法活性炭孔隙结构的调控机制[J]. 新型炭材料, 2018, 33(4): 289-302. |
Zuo S L. A review of the control of pore texture of phosphoric acid-activated carbons[J]. New Carbon Materials, 2018, 33(4): 289-302. | |
15 | 左宋林. 磷酸活化法制备活性炭综述(Ⅰ): 磷酸的作用机理[J]. 林产化学与工业, 2017, 37(3): 1-9. |
Zuo S L. Review on phosphoric acid activation for preparation of activated carbon (Ⅰ): Roles of phosphoric acid[J]. Chemistry and Industry of Forest Products, 2017, 37(3): 1-9. | |
16 | Quach N K N, Yang W D, Chung Z J, et al. The influence of the activation temperature on the structural properties of the activated carbon xerogels and their electrochemical performance[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-9. |
17 | 苟进胜, 常建民, 任学勇. 生物质热解过程中氮元素迁移规律研究进展[J]. 科技导报, 2012, 30(14): 70-74. |
Gou J S, Chang J M, Ren X Y. A review on the release characterization of nitrogen speicies during biomass pyrolysis[J]. Science & Technology Review, 2012, 30(14): 70-74. | |
18 | Rawal S, Kumar Y, Mandal U K, et al. Synthesis and electrochemical study of phosphorus-doped porous carbon for supercapacitor applications[J]. SN Applied Sciences, 2021, 3(2): 1-14. |
19 | Ghosh S, Barg S, Jeong S M, et al. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors[J]. Advanced Energy Materials, 2020, 10(32): 2001239. |
20 | Shang M, Zhang J, Liu X C, et al. N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors[J]. Applied Surface Science, 2021, 542: 148697. |
21 | Yang Z, Gao Y, Zhao Z, et al. Phytic acid assisted formation of P-doped hard carbon anode with enhanced capacity and rate capability for lithium ion capacitors[J]. Journal of Power Sources, 2020, 474: 228500. |
22 | Dou Q Y, Park H S. Perspective on high-energy carbon-based supercapacitors[J]. Energy & Environmental Materials, 2020, 3(3): 286-305. |
23 | Liu Y Z, Wang H, Li C C, et al. Hierarchical flaky porous carbon derived from waste polyimide film for high-performance aqueous supercapacitor electrodes[J]. International Journal of Energy Research, 2022, 46(1): 370-382. |
24 | Jiang C L, Yakaboylu G A, Yumak T, et al. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes[J]. Renewable Energy, 2020, 155: 38-52. |
25 | Koutcheiko S, Vorontsov V. Activated carbon derived from wood biochar and its application in supercapacitors[J]. Journal of Biobased Materials and Bioenergy, 2013, 7(6): 733-740. |
[1] | Tianhang ZHOU, Xingying LAN, Chunming XU. Artificial intelligence for accelerating polymer design: recent advances and future perspectives [J]. CIESC Journal, 2023, 74(1): 14-28. |
[2] | Boyang REN, Xiaogang CHE, Siyu LIU, Man WANG, Xinghua HAN, Ting DONG, Juan YANG. Preparation of coal-based porous carbon nanosheets by molten salt strategy as anodes for sodium-ion batteries [J]. CIESC Journal, 2022, 73(10): 4745-4753. |
[3] | Luyao TIAN, Zihao WANG, Yang SU, Huaqiang WEN, Weifeng SHEN. Research advances in deep learning based quantitative structure-property relationship modeling of solvents [J]. CIESC Journal, 2020, 71(10): 4462-4472. |
[4] | Xiangcheng MA, Wei QIN, Qinglin CHEN, Bingjian ZHANG. Modification of molecular descriptor and modeling for boiling point prediction of aromatic hydrocarbons [J]. CIESC Journal, 2019, 70(11): 4306-4314. |
[5] | HAN Shichang, ZOU Zhengguang, LÜ Tingting, WU Xingyu, YANG Qian. Synthesis and electrochemical performance of Ag-doped VO2(B) as cathode materials [J]. CIESC Journal, 2018, 69(4): 1741-1748. |
[6] | LI Qiaole, YAN Yinglin, YANG Rong, CHEN Liping, QIN Haichao, SHI Mangmang, WEI Yiqi. Electrochemical performance of activated carbon derived from corn bracts/sulfur composite cathode material for lithium-sulfur batteries [J]. CIESC Journal, 2017, 68(11): 4376-4382. |
[7] | YANG Rong, WANG Liqing, LÜ Mengni, DENG Kunfa, YAN Yinglin, REN Bing, LI Lan. Preparation and electrochemical properties of graphene/nano-sulfur composite as cathode materials for lithium-sulfur batteries [J]. CIESC Journal, 2016, 67(10): 4363-4369. |
[8] | HE Peng, CHEN Jianxin, SU Min, HAN Jian, CHENG Kun. Analysis of chemical composition and structure characteristics of shells [J]. CIESC Journal, 2015, 66(S2): 450-454. |
[9] | Zhang Rui, WU Yuanxin, HE Yunwei, AI Changchun. Synthesis of Li3PO4-doped Li(Ni0.5Co0.2Mn0.3)O2 by rheological phase method and its electrochemical performance as cathode material for Li-ion batteries [J]. CIESC Journal, 2015, 66(8): 3177-3182. |
[10] | JIANG Hao, LI Chunzhong. Surface reaction controlled preparation of hierarchical structure nanomaterials and their electrochemical performances [J]. CIESC Journal, 2015, 66(8): 2872-2877. |
[11] | LI Ji, WEI Tong, YAN Jun, LONG Conglai, FAN Zhuangjun. Preparation of graphene nanosheet/CoS2 composite and its application in supercapacitors [J]. CIESC Journal, 2014, 65(7): 2849-2854. |
[12] | WANG Qing,WANG Zhichao,JIA Chunxia,GONG Guoxi. Study on structural features of oil sands with solid state 13C NMR [J]. Chemical Industry and Engineering Progree, 2014, 33(06): 1392-1396. |
[13] | WAN Houzhao, MIAO Ling, XU Kui, QI Tong, JIANG Jianjun. Manganese oxide-based electrode behavior as materials for electrochemical supercapacitors [J]. CIESC Journal, 2013, 64(3): 801-813. |
[14] | MA Zifeng,ZHANG Huijuan,YUAN Xianxia,JIANG Qizhong. Research progress of non-precious metal oxygen reduction catalysts for low-temperature fuel cells [J]. , 2011, 30(1): 150-. |
[15] |
LI Jingkun,LIAO Xiaozhen,MA Zifeng.
Research progress in preparation process of LiFePO4 cathode materials for lithium ion battery [J]. , 2010, 29(8): 1508-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||