1 |
Chen H, Xu B B, Ping Q S, et al. Co2B2O5 as an anode material with high capacity for sodium ion batteries[J]. Rare Metals, 2020, 39(9): 1045-1052.
|
2 |
Zhao S Q, Guo Z Q, Yang J, et al. Nanoengineering of advanced carbon materials for sodium-ion batteries[J]. Small, 2021, 17(48): 2007431.
|
3 |
Lian P J, Zhao B S, Zhang L Q, et al. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries[J]. Journal of Materials Chemistry A, 2019, 7(36): 20540-20557.
|
4 |
孙宁. 钠离子电池硬炭负极材料和电极的研究[D]. 北京: 北京化工大学, 2019.
|
|
Sun N. Hard carbon anode materials and electrodes for sodium ion batteries[D]. Beijing: Beijing University of Chemical Technology, 2019.
|
5 |
Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
|
6 |
Xia J L, Lu A H, Yu X F, et al. Rational design of a trifunctional binder for hard carbon anodes showing high initial coulombic efficiency and superior rate capability for sodium-ion batteries[J]. Advanced Functional Materials, 2021, 31(40): 2104137.
|
7 |
Pu X J, Wang H M, Zhao D, et al. Recent progress in rechargeable sodium-ion batteries: toward high-power applications[J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(32): e1805427.
|
8 |
李云明. 钠离子储能电池碳基负极材料研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2017.
|
|
Li Y M. Studies on carbon-based anode materials for sodium-ion stationary batteries[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2017.
|
9 |
Yang B, Wang J, Zhu Y Y, et al. Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries[J]. Journal of Power Sources, 2021, 492: 229656.
|
10 |
Abou-Rjeily J, Laziz N A, Autret-Lambert C, et al. Towards valorizing natural coals in sodium-ion batteries: impact of coal rank on energy storage[J]. Scientific Reports, 2020, 10: 15871.
|
11 |
Li Y M, Hu Y S, Qi X G, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications[J]. Energy Storage Materials, 2016, 5: 191-197.
|
12 |
Wang B Y, Xia J L, Dong X L, et al. Highly purified carbon derived from deashed anthracite for sodium-ion storage with enhanced capacity and rate performance[J]. Energy & Fuels, 2020, 34(12): 16831-16837.
|
13 |
Lu H Y, Sun S F, Xiao L F, et al. High-capacity hard carbon pyrolyzed from subbituminous coal as anode for sodium-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(1): 729-735.
|
14 |
Xia J L, Yan D, Guo L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Advanced Materials (Deerfield Beach, Fla.), 2020, 32(21): e2000447.
|
15 |
张双全. 煤化学[M]. 4版. 徐州: 中国矿业大学出版社, 2015: 159-164.
|
|
Zhang S Q. Coal Chemistry[M]. 4th ed. Xuzhou: China University of Mining & Technology Press, 2015: 159-164.
|
16 |
王博阳, 夏吉利, 董晓玲, 等. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750.
|
|
Wang B Y, Xia J L, Dong X L, et al. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism[J]. CIESC Journal, 2021, 72(11): 5738-5750.
|
17 |
Sun Y, Lu P, Liang X, et al. High-yield microstructure-controlled amorphous carbon anode materials through a pre-oxidation strategy for sodium ion batteries[J]. Journal of Alloys and Compounds, 2019, 786: 468-474.
|
18 |
Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742.
|
19 |
Xiong Y K, Jin L J, Li Y, et al. Hydrogen peroxide oxidation degradation of a low-rank Naomaohu coal[J]. Fuel Processing Technology, 2020, 207: 106484.
|
20 |
Liu X F, Song D Z, He X Q, et al. Insight into the macromolecular structural differences between hard coal and deformed soft coal[J]. Fuel, 2019, 245: 188-197.
|
21 |
Cao Y L, Xiao L F, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787.
|
22 |
Li Y M, Mu L Q, Hu Y S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 2: 139-145.
|
23 |
Qi Y R, Lu Y X, Ding F X, et al. Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries[J]. Angewandte Chemie (International Ed. in English), 2019, 58(13): 4361-4365.
|
24 |
Chen C, Huang Y, Lu M W, et al. Tuning morphology, defects and functional group types in hard carbon via phosphorus doped for rapid sodium storage[J]. Carbon, 2021, 183: 415-427.
|
25 |
Xie F, Xu Z, Guo Z Y, et al. Hard carbons for sodium-ion batteries and beyond[J]. Progress in Energy, 2020, 2(4): 042002.
|
26 |
Zhao L F, Hu Z, Lai W H, et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts[J]. Advanced Energy Materials, 2021, 11(1): 2002704.
|
27 |
Lu P, Sun Y, Xiang H F, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(8): 1702434.
|
28 |
Zhu Y Y, Chen M M, Li Q, et al. A porous biomass-derived anode for high-performance sodium-ion batteries[J]. Carbon, 2018, 129: 695-701.
|
29 |
Cao B, Liu H, Xu B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. Journal of Materials Chemistry A, 2016, 4(17): 6472-6478.
|
30 |
Wang P Z, Zhu X S, Wang Q Q, et al. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(12): 5761-5769.
|
31 |
Sun F, Wang H, Qu Z B, et al. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: synergistic enhancement of adsorption and intercalation mechanisms[J]. Advanced Energy Materials, 2021, 11(1): 2002981.
|
32 |
Kang M M, Zhao H Q, Ye J Q, et al. Adsorption dominant sodium storage in three-dimensional coal-based graphite microcrystal/graphene composites[J]. Journal of Materials Chemistry A, 2019, 7(13): 7565-7572.
|
33 |
Xiao N, Wei Y B, Li H Q, et al. Boosting the sodium storage performance of coal-based carbon materials through structure modification by solvent extraction[J]. Carbon, 2020, 162: 431-437.
|
34 |
Wang T, Wang Y B, Cheng G, et al. Catalytic graphitization of anthracite as an anode for lithium-ion batteries[J]. Energy & Fuels, 2020, 34(7): 8911-8918.
|
35 |
Chen C, Huang Y, Meng Z Y, et al. N/O/P-rich three-dimensional carbon network for fast sodium storage[J]. Carbon, 2020, 170: 225-235.
|
36 |
Deng X L, Wei Z X, Cui C Y, et al. Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage[J]. Journal of Materials Chemistry A, 2018, 6(9): 4013-4022.
|
37 |
Kim H, Sadan M K, Kim C, et al. Simple and scalable synthesis of CuS as an ultrafast and long-cycling anode for sodium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(27): 16239-16248.
|
38 |
Gu H C, Yang L P, Zhang Y, et al. Highly reversible alloying/dealloying behavior of SnSb nanoparticles incorporated into N-rich porous carbon nanowires for ultra-stable Na storage[J]. Energy Storage Materials, 2019, 21: 203-209.
|