CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 535-545.DOI: 10.11949/0438-1157.20221017
• Reviews and monographs • Previous Articles Next Articles
Yue SONG1(), Qicheng ZHANG1, Wenchao PENG1, Yang LI1, Fengbao ZHANG1, Xiaobin FAN1,2()
Received:
2022-07-25
Revised:
2022-11-10
Online:
2023-03-21
Published:
2023-02-05
Contact:
Xiaobin FAN
宋悦1(), 张启成1, 彭文朝1, 李阳1, 张凤宝1, 范晓彬1,2()
通讯作者:
范晓彬
作者简介:
宋悦(1998—),女,硕士研究生,song_9809@tju.edu.cn
基金资助:
CLC Number:
Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis[J]. CIESC Journal, 2023, 74(2): 535-545.
宋悦, 张启成, 彭文朝, 李阳, 张凤宝, 范晓彬. MoS2基单原子催化剂的合成及其在电催化中的应用[J]. 化工学报, 2023, 74(2): 535-545.
Fig.8 The different adsorption energy, bond lengths between Cu and the adjacent S atoms and electron transfer of Cu adsorption on the surface of 1 T-MoS2 and 2H-MoS2[57]
催化剂 | 电解液 | 单原子 负载量 | MoS2相态 | 过电位η10/mV | Tafel斜率/ (mV/dec) | 稳定性 | 文献 |
---|---|---|---|---|---|---|---|
SA Co-D 1T MoS2 | 0.5 mol/L H2SO4 | 3.54%(质量) | 1T | 42 | 32 | 240 h | [ |
SA-Ru-MoS2 | 1 mol/L KOH | 5%(质量) | 1T /2H | 76 | 21 | — | [ |
Mo SAs/ML-MoS2 | 0.5 mol/L H2SO4 | 2.21%(质量) | 2H | 107 | 35.1 | — | [ |
1 mol/L KOH | 209 | 36.4 | — | ||||
Pt-MoS2 | 0.5 mol/L H2SO4 | 0.22%(质量) | 2H | 44 | 34.83 | 20 h | [ |
1 mol/L KOH | 123 | 76.71 | — | ||||
Ru/np-MoS2 | 1 mol/L KOH | 8%(原子) | 1T | 30 | 31 | 40 h | [ |
Ru0.10@2H-MoS2 | 0.5 mol/L H2SO4 | — | 2H | 167 | 77.5 | 12 h | [ |
1 mol/L KOH | 51 | 64.9 | 12 h | ||||
1 mol/L PBS | 137 | 81.1 | 12 h | ||||
Rh-MoS2 | 0.5 mol/L H2SO4 | 4.8%(质量) | 2H | 67 | 54 | 20 h | [ |
Cu@MoS2 | 0.5 mol/L H2SO4 | — | 1T | 131 | 51 | 25000 s | [ |
NiSA-MoS2/CC | 0.5 mol/L H2SO4 | — | 2H | 110 | 74 | 2000圈CV | [ |
1 mol/L KOH | 98 | 75 | |||||
Ru/Ni-MoS2 | 1 mol/L KOH | 0.4%(质量)Ru,2.3%(质量)Ni | 2H | 32 | 41 | 20 h | [ |
1%Pd-MoS2 | 0.5 mol/L H2SO4 | 1%(质量) | 1T | 78 | 72 | 100 h | [ |
Table 1 The HER performance of MoS2-based monatomic catalysts
催化剂 | 电解液 | 单原子 负载量 | MoS2相态 | 过电位η10/mV | Tafel斜率/ (mV/dec) | 稳定性 | 文献 |
---|---|---|---|---|---|---|---|
SA Co-D 1T MoS2 | 0.5 mol/L H2SO4 | 3.54%(质量) | 1T | 42 | 32 | 240 h | [ |
SA-Ru-MoS2 | 1 mol/L KOH | 5%(质量) | 1T /2H | 76 | 21 | — | [ |
Mo SAs/ML-MoS2 | 0.5 mol/L H2SO4 | 2.21%(质量) | 2H | 107 | 35.1 | — | [ |
1 mol/L KOH | 209 | 36.4 | — | ||||
Pt-MoS2 | 0.5 mol/L H2SO4 | 0.22%(质量) | 2H | 44 | 34.83 | 20 h | [ |
1 mol/L KOH | 123 | 76.71 | — | ||||
Ru/np-MoS2 | 1 mol/L KOH | 8%(原子) | 1T | 30 | 31 | 40 h | [ |
Ru0.10@2H-MoS2 | 0.5 mol/L H2SO4 | — | 2H | 167 | 77.5 | 12 h | [ |
1 mol/L KOH | 51 | 64.9 | 12 h | ||||
1 mol/L PBS | 137 | 81.1 | 12 h | ||||
Rh-MoS2 | 0.5 mol/L H2SO4 | 4.8%(质量) | 2H | 67 | 54 | 20 h | [ |
Cu@MoS2 | 0.5 mol/L H2SO4 | — | 1T | 131 | 51 | 25000 s | [ |
NiSA-MoS2/CC | 0.5 mol/L H2SO4 | — | 2H | 110 | 74 | 2000圈CV | [ |
1 mol/L KOH | 98 | 75 | |||||
Ru/Ni-MoS2 | 1 mol/L KOH | 0.4%(质量)Ru,2.3%(质量)Ni | 2H | 32 | 41 | 20 h | [ |
1%Pd-MoS2 | 0.5 mol/L H2SO4 | 1%(质量) | 1T | 78 | 72 | 100 h | [ |
1 | Chen H, Liang X, Liu Y P, et al. Active site engineering in porous electrocatalysts[J]. Advanced Materials, 2020, 32(44): e2002435. |
2 | 原荷峰, 马自在, 王淑敏, 等. 富氧空位Co3O4纳米线的制备及其电解水性能研究[J]. 化工学报, 2020, 71(12): 5831-5841. |
Yuan H F, Ma Z Z, Wang S M, et al. Engineering oxygen vacancy-rich Co3O4 nanowire as high-efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting[J]. CIESC Journal, 2020, 71(12): 5831-5841. | |
3 | Cai C, Wang M Y, Han S B, et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoO x nanosheets[J]. ACS Catalysis, 2021, 11(1): 123-130. |
4 | 刘恒源, 王海辉, 徐建鸿. 电催化氮还原合成氨电化学系统研究进展[J]. 化工学报, 2022, 73(1): 32-45. |
Liu H Y, Wang H H, Xu J H. Advances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen[J]. CIESC Journal, 2022, 73(1): 32-45. | |
5 | Yun Q, Li L, Hu Z, et al. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage[J]. Advanced Materials, 2020, 32(1): 1903826. |
6 | Lei W W, Mochalin V N, Liu D, et al. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization[J]. Nature Communications, 2015, 6: 8849. |
7 | Wang J H, Liu D N, Huang H, et al. In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis[J]. Angewandte Chemie International Edition, 2018, 57(10): 2600-2604. |
8 | Xu X D, Zhang Y L, Sun H Y, et al. Progress and perspective: MXene and MXene-based nanomaterials for high-performance energy storage devices[J]. Advanced Electronic Materials, 2021, 7(7): 2000967. |
9 | Mendoza-Sánchez B, Gogotsi Y. Synthesis of two-dimensional materials for capacitive energy storage[J]. Advanced Materials, 2016, 28(29): 6104-6135. |
10 | Lee S J, Theerthagiri J, Nithyadharseni P, et al. Heteroatom-doped graphene-based materials for sustainable energy applications: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110849. |
11 | Kumar R, Sahoo S, Joanni E, et al. Heteroatom doped graphene engineering for energy storage and conversion[J]. Materials Today, 2020, 39: 47-65. |
12 | Hu M C, Yao Z H, Wang X Q. Graphene-based nanomaterials for catalysis[J]. Industrial & Engineering Chemistry Research, 2017, 56(13): 3477-3502. |
13 | Warner J H, Margine E R, Mukai M, et al. Dislocation-driven deformations in graphene[J]. Science, 2012, 337(6091): 209-212. |
14 | Fang Q L, Shen Y, Chen B L. Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: a review[J]. Chemical Engineering Journal, 2015, 264: 753-771. |
15 | Chen W Y, Jiang X F, Lai S N, et al. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds[J]. Nature Communications, 2020, 11(1): 1302. |
16 | Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. |
17 | Maitra U, Gupta U, De M, et al. Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene[J]. Angewandte Chemie, 2013, 125(49): 13295-13299. |
18 | Acerce M, Voiry D, Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology, 2015, 10(4): 313-318. |
19 | Jaramillo T F, Jørgensen K P, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834): 100-102. |
20 | Li H, Tsai C, Koh A L, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nature Materials, 2016, 15(1): 48-53. |
21 | Han J H, Zhang S C, Song Q G, et al. The synergistic effect with S-vacancies and built-in electric field on a TiO2/MoS2 photoanode for enhanced photoelectrochemical performance[J]. Sustainable Energy & Fuels, 2021, 5(2): 509-517. |
22 | Wu W Z, Niu C Y, Wei C, et al. Activation of MoS2 basal planes for hydrogen evolution by zinc[J]. Angewandte Chemie, 2019, 131(7): 2051-2055. |
23 | Xiao W, Liu P T, Zhang J Y, et al. Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution[J]. Advanced Energy Materials, 2017, 7(7): 1602086. |
24 | Deng S J, Luo M, Ai C Z, et al. Synergistic doping and intercalation: realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2019, 58(45): 16289-16296. |
25 | Zhang L Y, Zheng Y J, Wang J C, et al. Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with co-doping for efficient alkaline hydrogen evolution by boosting Volmer reaction[J]. Small, 2021, 17(10): e2006730. |
26 | Anjum M A R, Jeong H Y, Lee M H, et al. Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS2 with multifunctional active sites[J]. Advanced Materials, 2018, 30(20): 1707105. |
27 | Li Z D, Yan X X, He D, et al. Manipulating coordination structures of mixed-valence copper single atoms on 1T-MoS2 for efficient hydrogen evolution[J]. ACS Catalysis, 2022, 12(13): 7687-7695. |
28 | Jiao S L, Kong M S, Hu Z P, et al. Pt atom on the wall of atomic layer deposition ( A L D ) - m a d e MoS2 nanotubes for efficient hydrogen evolution[J]. Small, 2022, 18(16): 2105129. |
29 | Cheng N C, Zhang L, Doyle-Davis K, et al. Single-atom catalysts: from design to application[J]. Electrochemical Energy Reviews, 2019, 2(4): 539-573. |
30 | Chen S H, Li W H, Jiang W J, et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis[J]. Angewandte Chemie International Edition, 2022, 61(4): e202114450. |
31 | Liu Y W, Wang B X, Fu Q, et al. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites[J]. Angewandte Chemie International Edition, 2021, 60(41): 22522-22528. |
32 | Zhao Y Q, Ling T, Chen S M, et al. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2019, 58(35): 12252-12257. |
33 | Wang Y, Mao J, Meng X G, et al. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications[J]. Chemical Reviews, 2019, 119(3): 1806-1854. |
34 | Xuan N N, Chen J H, Shi J J, et al. Single-atom electroplating on two dimensional materials[J]. Chemistry of Materials, 2019, 31(2): 429-435. |
35 | Dong G F, Fang M, Wang H T, et al. Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(24): 13080-13086. |
36 | Tavakkoli M, Holmberg N, Kronberg R, et al. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction[J]. ACS Catalysis, 2017, 7(5): 3121-3130. |
37 | Xue Y R, Huang B L, Yi Y P, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nature Communications, 2018, 9: 1460. |
38 | Shi Y, Huang W M, Li J, et al. Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts[J]. Nature Communications, 2020, 11: 4558. |
39 | Zhang J M, Xu X P, Yang L, et al. Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction[J]. Small Methods, 2019, 3(12): 1900653. |
40 | Qi K, Cui X Q, Gu L, et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis[J]. Nature Communications, 2019, 10: 5231. |
41 | Sun Q M, Wang N, Zhang T J, et al. Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes[J]. Angewandte Chemie International Edition, 2019, 58(51): 18570-18576. |
42 | Lau T H M, Lu X W, Kulhavý J, et al. Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution[J]. Chemical Science, 2018, 9(21): 4769-4776. |
43 | Luo Y T, Zhang S Q, Pan H Y, et al. Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution[J]. ACS Nano, 2020, 14(1): 767-776. |
44 | Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861): 353-358. |
45 | Sultan S, Tiwari J N, Singh A N, et al. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting[J]. Advanced Energy Materials, 2019, 9(22): 1900624. |
46 | Li Y G, Wang H L, Xie L M, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19): 7296-7299. |
47 | Liu D B, Li X Y, Chen S M, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution[J]. Nature Energy, 2019, 4(6): 512-518. |
48 | Chen Y J, Ji S F, Sun W M, et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production[J]. Angewandte Chemie International Edition, 2020, 59(3): 1295-1301. |
49 | Zhu J T, Tu Y D, Cai L J, et al. Defect-assisted anchoring of Pt single atoms on MoS2 nanosheets produces high-performance catalyst for industrial hydrogen evolution reaction[J]. Small, 2022, 18(4): 2104824. |
50 | Jiang K, Luo M, Liu Z X, et al. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution[J]. Nature Communications, 2021, 12: 1687. |
51 | Wang J, Fang W H, Hu Y, et al. Single atom Ru doping 2H-MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range[J]. Applied Catalysis B: Environmental, 2021, 298: 120490. |
52 | Meng X Y, Ma C, Jiang L Z, et al. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution[J]. Angewandte Chemie, 2020, 132(26): 10588-10593. |
53 | Gao X P, Zhou Y N, Cheng Z W, et al. Distance synergy of single Ag atoms doped MoS2 for hydrogen evolution electrocatalysis[J]. Applied Surface Science, 2021, 547: 149113. |
54 | Pattengale B, Huang Y, Yan X, et al. Dynamic evolution and reversibility of single-atom N i ( Ⅱ ) active site in 1T-MoS2 electrocatalysts for hydrogen evolution[J]. Nature Communications, 2020, 11(1): 4114. |
55 | Zhang H B, Yu L, Chen T, et al. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution[J]. Advanced Functional Materials, 2018, 28(51): 1807086. |
56 | Wang G W, Zhang G K, Ke X X, et al. Direct synthesis of stable 1T-MoS2 doped with Ni single atoms for water splitting in alkaline media[J]. Small, 2022, 18(16): 2107238. |
57 | Ji L, Yan P F, Zhu C H, et al. One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2019, 251: 87-93. |
58 | Wang Q, Zhao Z L, Dong S, et al. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction[J]. Nano Energy, 2018, 53: 458-467. |
59 | Wang J, Huang Z Q, Liu W, et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. Journal of the American Chemical Society, 2017, 139(48): 17281-17284. |
60 | Li J, Huang H L, Xue W J, et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4 [J]. Nature Catalysis, 2021, 4(8): 719-729. |
61 | Tong M M, Sun F F, Xie Y, et al. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction[J]. Angewandte Chemie, 2021, 133(25): 14124-14131. |
62 | Wang T T, Kou Z K, Mu S C, et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries[J]. Advanced Functional Materials, 2018, 28(5): 1705048. |
63 | Ge J M, Zhang D B, Qin Y, et al. Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production[J]. Applied Catalysis B: Environmental, 2021, 298: 120557. |
64 | Luo Z Y, Ouyang Y X, Zhang H, et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution[J]. Nature Communications, 2018, 9: 2120. |
65 | Xiong Q Z, Wang Y, Liu P F, et al. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting[J]. Advanced Materials, 2018, 30(29): 1801450. |
66 | Muthurasu A, Maruthapandian V, Kim H Y. Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2019, 248: 202-210. |
67 | Ran N, Song E H, Wang Y W, et al. Dynamic coordination transformation of active sites in single-atom MoS2 catalysts for boosted oxygen evolution catalysis[J]. Energy & Environmental Science, 2022, 15(5): 2071-2083. |
68 | Jiao F, Xu B J. Electrochemical ammonia synthesis and ammonia fuel cells[J]. Advanced Materials, 2019, 31(31): 1805173. |
69 | Yin Y, Han J, Zhang Y, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. Journal of the American Chemical Society, 2016, 138(25): 7965-7972. |
70 | Su H Y, Chen L L, Chen Y Z, et al. Single atoms of iron on MoS2 nanosheets for N2 electroreduction into ammonia[J]. Angewandte Chemie International Edition, 2020, 59(46): 20411-20416. |
71 | Yang T, Song T T, Zhou J, et al. High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation[J]. Nano Energy, 2020, 68: 104304. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[9] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[10] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[11] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[12] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[15] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 375
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 455
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||