CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 877-889.DOI: 10.11949/0438-1157.20231124
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yuexing WEI1(), Ziyue HE1, Kezhou YAN2, Linyu LI1, Yuhong QIN1(), Chong HE1, Luchang JIAO1
Received:
2023-10-31
Revised:
2023-12-21
Online:
2024-05-11
Published:
2024-03-25
Contact:
Yuhong QIN
卫月星1(), 贺子岳1, 燕可洲2, 李林玉1, 秦育红1(), 贺冲1, 焦路畅1
通讯作者:
秦育红
作者简介:
卫月星(1991—),女,博士,讲师,weiyuexing@tyut.edu.cn
基金资助:
CLC Number:
Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag[J]. CIESC Journal, 2024, 75(3): 877-889.
卫月星, 贺子岳, 燕可洲, 李林玉, 秦育红, 贺冲, 焦路畅. 改性煤气化渣催化降解双酚A的性能研究[J]. 化工学报, 2024, 75(3): 877-889.
Add to citation manager EndNote|Ris|BibTeX
元素 | 元素含量/%(mass) | 化学组成 | 组分含量/%(mass) |
---|---|---|---|
O | 41.03 | — | — |
Si | 14.62 | SiO2 | 31.28 |
Fe | 19.69 | Fe2O3 | 28.15 |
Al | 9.76 | Al2O3 | 15.84 |
Ca | 8.34 | CaO | 13.65 |
S | 1.62 | SO3 | 4.04 |
K | 1.44 | TiO2 | 1.73 |
Ti | 1.04 | K2O | 1.73 |
Cl | 0.64 | P2O5 | 1.06 |
Na | 0.58 | Na2O | 0.87 |
P | 0.46 | Cl | 0.58 |
Mg | 0.35 | MgO | 0.59 |
Zr | 0.13 | ZrO2 | 0.18 |
Sr | 0.12 | SrO | 0.14 |
Mn | 0.07 | MnO | 0.09 |
Zn | 0.05 | ZnO | 0.06 |
Rb | 0.01 | Rb2O | 0.01 |
Table 1 Element content and chemical composition of coal gasification slag
元素 | 元素含量/%(mass) | 化学组成 | 组分含量/%(mass) |
---|---|---|---|
O | 41.03 | — | — |
Si | 14.62 | SiO2 | 31.28 |
Fe | 19.69 | Fe2O3 | 28.15 |
Al | 9.76 | Al2O3 | 15.84 |
Ca | 8.34 | CaO | 13.65 |
S | 1.62 | SO3 | 4.04 |
K | 1.44 | TiO2 | 1.73 |
Ti | 1.04 | K2O | 1.73 |
Cl | 0.64 | P2O5 | 1.06 |
Na | 0.58 | Na2O | 0.87 |
P | 0.46 | Cl | 0.58 |
Mg | 0.35 | MgO | 0.59 |
Zr | 0.13 | ZrO2 | 0.18 |
Sr | 0.12 | SrO | 0.14 |
Mn | 0.07 | MnO | 0.09 |
Zn | 0.05 | ZnO | 0.06 |
Rb | 0.01 | Rb2O | 0.01 |
N/% | C/% | H/% | S/% | O/% |
---|---|---|---|---|
0.21 | 21.02 | 0.24 | 3.44 | 75.09 |
Table 2 Organic elemental analysis of coal gasification slags
N/% | C/% | H/% | S/% | O/% |
---|---|---|---|---|
0.21 | 21.02 | 0.24 | 3.44 | 75.09 |
样品 | C/% | O/% | Fe/% | Si/% | Al/% | 其他/% |
---|---|---|---|---|---|---|
3.3HCl-FS | 3.8 | 43.8 | 5.5 | 21.8 | 16.0 | 9.1 |
5.5NaOH-FS | 87.5 | 7.9 | 2.4 | 0.7 | 0.5 | 1.0 |
0.6ZnCl2-FS | 35.4 | 27.4 | 2.3 | 8.7 | 4.0 | 22.2 |
Table 3 Element distribution of the different modified coal gasification slag
样品 | C/% | O/% | Fe/% | Si/% | Al/% | 其他/% |
---|---|---|---|---|---|---|
3.3HCl-FS | 3.8 | 43.8 | 5.5 | 21.8 | 16.0 | 9.1 |
5.5NaOH-FS | 87.5 | 7.9 | 2.4 | 0.7 | 0.5 | 1.0 |
0.6ZnCl2-FS | 35.4 | 27.4 | 2.3 | 8.7 | 4.0 | 22.2 |
样品 | N/% | C/% | H/% | S/% | O/% |
---|---|---|---|---|---|
FS | 0.21 | 21.02 | 0.24 | 3.44 | 75.09 |
3.3HCl-FS | 0.27 | 30.07 | 0.87 | 3.46 | 65.60 |
5.5NaOH-FS | 0.31 | 52.70 | 0.75 | 4.99 | 41.25 |
0.6ZnCl2-FS | 0.05 | 21.10 | 0.06 | 3.47 | 75.32 |
Table 4 Organic elements analysis data of different modified coal gasification slags
样品 | N/% | C/% | H/% | S/% | O/% |
---|---|---|---|---|---|
FS | 0.21 | 21.02 | 0.24 | 3.44 | 75.09 |
3.3HCl-FS | 0.27 | 30.07 | 0.87 | 3.46 | 65.60 |
5.5NaOH-FS | 0.31 | 52.70 | 0.75 | 4.99 | 41.25 |
0.6ZnCl2-FS | 0.05 | 21.10 | 0.06 | 3.47 | 75.32 |
样品 | SBET/(m2·g-1) | 孔体积/(cm3·g-1) | 平均孔径/nm |
---|---|---|---|
FS | 1.69 | 0 | 2.7 |
3.3HCl-FS | — | — | — |
5.5NaOH-FS | 27.95 | 0.04 | 5.1 |
0.6ZnCl2-FS | 9.20 | 0.04 | 17.0 |
Table 5 Specific surface area, pore structure and aperture of different modified coal gasification slag
样品 | SBET/(m2·g-1) | 孔体积/(cm3·g-1) | 平均孔径/nm |
---|---|---|---|
FS | 1.69 | 0 | 2.7 |
3.3HCl-FS | — | — | — |
5.5NaOH-FS | 27.95 | 0.04 | 5.1 |
0.6ZnCl2-FS | 9.20 | 0.04 | 17.0 |
催化剂 | 污染物 | 污染物浓度 | 催化剂用量 | 时间/min | 降解率/% | 文献 |
---|---|---|---|---|---|---|
5.5NaOH-FS | BPA | 20 mg·L-1 | 1 g·L-1 | 60 | 95 | 本文 |
生物炭 | BPA | 20 mg·L-1 | 1 g·L-1 | 150 | 97 | [ |
CF@MWCNT | BPA | 40 mg·L-1 | 0.3 g·L-1 | 60 | 44 | [ |
S-氮化碳 | BPA | 50 mg·L-1 | 0.3 g·L-1 | 120 | 60 | [ |
MnFe2O4 | BPA | 5 mg·L-1 | 0.2 g·L-1 | 30 | 88.44 | [ |
污泥碳 | BPA | 0.1 mmol·L-1 | 0.5 g·L-1 | 60 | 94.5 | [ |
MnO2 | BPA | 40 μmol·L-1 | 17.4 mg·L-1 | 60 | 94 | [ |
Ca(OH)2 | BPA | 0.02 mmol·L-1 | 1.5 mmol·L-1 | 80 | 90.81 | [ |
Table 6 The activated PMS degradation of BPA performance comparison of 5.5NaOH-FS and other synthesized catalysts
催化剂 | 污染物 | 污染物浓度 | 催化剂用量 | 时间/min | 降解率/% | 文献 |
---|---|---|---|---|---|---|
5.5NaOH-FS | BPA | 20 mg·L-1 | 1 g·L-1 | 60 | 95 | 本文 |
生物炭 | BPA | 20 mg·L-1 | 1 g·L-1 | 150 | 97 | [ |
CF@MWCNT | BPA | 40 mg·L-1 | 0.3 g·L-1 | 60 | 44 | [ |
S-氮化碳 | BPA | 50 mg·L-1 | 0.3 g·L-1 | 120 | 60 | [ |
MnFe2O4 | BPA | 5 mg·L-1 | 0.2 g·L-1 | 30 | 88.44 | [ |
污泥碳 | BPA | 0.1 mmol·L-1 | 0.5 g·L-1 | 60 | 94.5 | [ |
MnO2 | BPA | 40 μmol·L-1 | 17.4 mg·L-1 | 60 | 94 | [ |
Ca(OH)2 | BPA | 0.02 mmol·L-1 | 1.5 mmol·L-1 | 80 | 90.81 | [ |
1 | 冯向港, 葛奋飞, 张印民, 等.煤气化渣高值化利用的研究进展及应用展望[J]. 洁净煤技术, 2023, 29(11): 122-132 |
Feng X G, Ge F F, Zhang Y M, et al. Research progress and application prospects of high-value utilization of coal gasification slag[J]. Clean coal technology, 2023, 29(11): 122-132. | |
2 | 张瑞梅, 刘定桦, 何浩, 等. 煤气化细渣综合利用与碳灰分离技术现状[J]. 煤炭工程, 2023, 55(5): 175-182. |
Zhang R M, Liu D H, He H, et al. Comprehensive utilization of coal gasification fine slag and carbon ash separation technology[J]. Coal Engineering, 2023, 55(5): 175-182. | |
3 | 胡文豪. 煤气化渣铝硅组分活化分离与资源化利用基础研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019. |
Hu W H. Basic study on activation separation and resource utilization of Al-Si components in coal gasification residue[D].Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2019. | |
4 | Liu X D, Jin Z W, Jing Y H, et al. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35: 92-106. |
5 | Yuan N, Zhao A J, Hu Z K, et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment: a review[J]. Chemosphere, 2022, 287(Pt 2): 132227. |
6 | 郭航昊, 王冀, 马志斌, 等. 煤气化渣玻璃体组成和含量对其碱激发反应活性的影响[J]. 洁净煤技术, 2023, 29(7): 87-94. |
Guo H H, Wang J, Ma Z B, et al. Influence mechanism of composition and content of glassy phase on cementitious reactivity of coal gasification slag[J]. Clean Coal Technology, 2023, 29(7): 87-94. | |
7 | Wu Y H, Ma Y L, Sun Y G, et al. Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal[J]. Journal of Cleaner Production, 2020, 277: 123186. |
8 | 朱丹丹. 煤气化细渣在土壤改良及水污染治理中的资源化利用研究[D]. 长春: 吉林大学, 2021. |
Zhu D D. Study on the utilization of coal gasification fine slag in soil improvement and water pollution control[D]. Changchun: Jilin University, 2021. | |
9 | 刘硕. 煤气化细渣制备介孔材料及净水剂研究[D]. 长春: 吉林大学, 2019. |
Liu S. Study on preparation of mesoporous materials and water purifying agent from coal gasification fine slag[D].Changchun: Jilin University, 2019. | |
10 | Guo F H, Miao Z K, Guo Z K, et al. Properties of flotation residual carbon from gasification fine slag[J]. Fuel, 2020, 267: 117043. |
11 | Zhan S H, Zhang H X, Mi X Y, et al. Efficient Fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt-zinc oxides[J]. Environmental Science & Technology, 2020, 54(13): 8333-8343. |
12 | Kim H S, Jang A, Choi S Y, et al. Vacancy-induced electronic structure variation of acceptors and correlation with proton conduction in perovskite oxides[J]. Angewandte Chemie International Edition, 2016, 55(43): 13499-13503. |
13 | Gao S T, Zhang Y C, Li H X, et al. The microwave absorption properties of residual carbon from coal gasification fine slag[J]. Fuel, 2021, 290: 120050. |
14 | Yang L, Wang F Z, Hakki A, et al. The influence of zeolites fly ash bead/TiO2 composite material surface morphologies on their adsorption and photocatalytic performance[J]. Applied Surface Science, 2017, 392: 687-696. |
15 | Zhu D D, Shi L N, Li H M, et al. Study of the synthesis, adsorption property, and photocatalytic activity of TiO2/coal gasification fine slag mesoporous silica glass microsphere composite[J]. Environmental Science and Pollution Research, 2023, 30(4): 9416-9427. |
16 | Long Y H, Yang P Z, Wang C Y, et al. Peroxymonosulfate activation by iron-carbon composite derived from coal gasification slag for sulfamethoxazole removal: performance evaluation and mechanism insight[J]. Chemical Engineering Journal, 2023, 456: 140996. |
17 | 焦昭杰, 陈立功, 柳云骐, 等. CuCe氧化物催化剂的制备及CWPO降解双酚A废水研究[J]. 化工学报, 2020, 71(4): 1646-1656. |
Jiao Z J, Chen L G, Liu Y Q, et al. Preparation of CuCe oxide catalyst for CWPO degradation of bisphenol A[J]. CIESC Journal, 2020, 71(4): 1646-1656. | |
18 | 尹周澜, 高孝恢, 邹祖荣. 硅酸盐中金属离子对Si—O键影响的量子化学研究[J]. 矿物学报, 1990, 10(4): 348-355. |
Yin Z L, Gao X H, Zou Z R. Quantum chemistry research on the effect of metallic cations on Si—O bonds in silicates[J]. Acta Mineralogica Sinica, 1990, 10(4): 348-355. | |
19 | 林凤飞. 氯化锌活化梧桐基碳材料的制备及亚甲基蓝吸附性能研究[D]. 合肥: 合肥工业大学, 2022. |
Lin F F. Study on preparation and adsorption properties of methylene blue of Chinese parasol based carbon materials activated by zinc chloride[D]. Hefei: Hefei University of Technology, 2022. | |
20 | Wang Y L, Han X N, Cui S P, et al. Study on the mechanism of iron-rich coal gasification slag on NO conversion in high temperature flue gas of cement kiln[J]. Fuel, 2023, 332: 126254. |
21 | Liu S, Chen X T, Ai W D, et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. Journal of Cleaner Production, 2019, 212: 1062-1071. |
22 | 刘雪梅, 赵蓓. 氯化锌造孔甘蔗渣制备的生物炭对废水中Cr(Ⅵ)的吸附研究[J]. 应用化工, 2019, 48(6): 1354-1358, 1362. |
Liu X M, Zhao B. Adsorption of Cr(Ⅵ) in wastewater by biochar prepared from zinc chloride modified bagasse[J]. Applied Chemical Industry, 2019, 48(6): 1354-1358, 1362. | |
23 | 舒锐, 郭飞强, 白家明, 等. 煤气化细渣高温碱活化制备高性能孔雀石绿吸附材料的研究[J]. 煤炭转化, 2022, 45(5): 63-71. |
Shu R, Guo F Q, Bai J M, et al. Study on preparation of high-performance adsorption material for malachite green by high-temperature alkali activation of coal gasification fine slag[J]. Coal Conversion, 2022, 45(5): 63-71. | |
24 | 吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9): 981-999. |
Lyu L, Hu C. Heterogeneous Fenton catalytic water treatment technology and mechanism[J]. Progress in Chemistry, 2017, 29(9): 981-999. | |
25 | 尹洪峰, 汤云, 任耘, 等. Texaco气化炉炉渣基本特性与应用研究[J]. 煤炭转化, 2009, 32(4): 30-33. |
Yin H F, Tang Y, Ren Y, et al. Study on the characteristic and application of gasification slag from texaco gasifier[J]. Coal Conversion, 2009, 32(4): 30-33. | |
26 | Ai W D, Zhang J P, Zhang J Y, et al. Mechanical properties and morphology of coal gasification fine slag glass bead-filled acrylonitrile–butadiene–styrene (ABS) composites[J]. Journal of Applied Polymer Science, 2020, 137(17): 1-9. |
27 | Zhuang S T, Wang J L. Magnetic COFs as catalyst for Fenton-like degradation of sulfamethazine[J]. Chemosphere, 2021, 264(Pt 2): 128561. |
28 | Minaei S, Zoroufchi Benis K, McPhedran K N, et al. Evaluation of a ZnCl2-modified biochar derived from activated sludge biomass for adsorption of sulfamethoxazole[J]. Chemical Engineering Research and Design, 2023, 190: 407-420. |
29 | 苗泽凯. 煤气化细渣中残炭/矿物质协同构筑分级孔材料及捕集CO2研究[D]. 徐州: 中国矿业大学, 2022. |
Miao Z K. Study on synergistic synthesis hierarchical porous materials from residual carbon/minerals in coal gasification fine slag and CO2 capture[D]. Xuzhou: China University of Mining and Technology, 2022. | |
30 | Cherono F, Mburu N, Kakoi B. Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber[J]. Heliyon, 2021, 7(11): e08254. |
31 | Ren L, Ding L, Guo Q H, et al. Characterization, carbon-ash separation and resource utilization of coal gasification fine slag: a comprehensive review[J]. Journal of Cleaner Production, 2023, 398: 136554. |
32 | Zhu D D, Zuo J, Jiang Y S, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. The Science of the Total Environment, 2020, 707: 136102. |
33 | 于晓彬. 微气泡强化碱介质中活性氧生成的基础研究[D]. 天津: 天津大学, 2017. |
Yu X B. Fundamental study on reactive oxygen species generation of alkaline medium with microbubbles’ intensification[D]. Tianjin: Tianjin University, 2017. | |
34 | Li X J, Liao F Z, Ye L M, et al. Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: catalytic performance and mechanism[J]. Journal of Hazardous Materials, 2020, 398: 122938. |
35 | Gao Y J, Chen Y, Song T H, et al. Activated peroxymonosulfate with ferric chloride-modified biochar to degrade bisphenol A: characteristics, influencing factors, reaction mechanism and reuse performance[J]. Separation and Purification Technology, 2022, 300: 121857. |
36 | Kakavandi B, Alavi S, Ghanbari F, et al. Bisphenol A degradation by peroxymonosulfate photo-activation coupled with carbon-based cobalt ferrite nanocomposite: performance, upgrading synergy and mechanistic pathway[J]. Chemosphere, 2022, 287: 132024. |
37 | Lin K Y A, Zhang Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327. |
38 | Deng J, Xu M Y, Qiu C G, et al. Magnetic MnFe2O4 activated peroxymonosulfate processes for degradation of bisphenol A: performance, mechanism and application feasibility[J]. Applied Surface Science, 2018, 459: 138-147. |
39 | Fan X H, Lin H, Zhao J J, et al. Activation of peroxymonosulfate by sewage sludge biochar-based catalyst for efficient removal of bisphenol A: performance and mechanism[J]. Separation and Purification Technology, 2021, 272: 118909. |
40 | Wang, L H, Jiang, J P, Su Y Z, et al. Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide[J]. Chemical engineering journal, 2018, 352: 1004-1013. |
41 | Nie M H, Deng Y W, Nie S H, et al. Simultaneous removal of bisphenol A and phosphate from water by peroxymonosulfate combined with calcium hydroxide[J]. Chemical Engineering Journal, 2019, 369: 35-45. |
42 | Wang P P, Liu X L, Qiu W, et al. Catalytic degradation of micropollutant by peroxymonosulfate activation through Fe(Ⅲ)/Fe(Ⅱ) cycle confined in the nanoscale interlayer of Fe(Ⅲ)-saturated montmorillonite[J]. Water Research, 2020, 182: 116030. |
43 | Kong L S, Fang G D, Chen Y F, et al. Efficient activation of persulfate decomposition by Cu2FeSnS4 nanomaterial for bisphenol A degradation: kinetics, performance and mechanism studies[J]. Applied Catalysis B: Environmental, 2019, 253: 278-285. |
[1] | Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification [J]. CIESC Journal, 2024, 75(3): 760-767. |
[2] | Xingyu GAI, Yuxue YUE, Chunhua YANG, Zilong ZHANG, Tianzi CAI, Haifeng ZHANG, Bolin WANG, Xiaonian LI. Carbon supported Cs- and Cu-based catalysts for gas-phase dehydrochlorination of 1,1,2-trichloroethane [J]. CIESC Journal, 2024, 75(2): 575-583. |
[3] | Yanping JIA, Dongxu YIN, Jingyi XU, Haifeng ZHANG, Lanhe ZHANG. Mechanism study of oxytetracycline hydrochloride degradation through activating sulfite by Fe2+/Mn2+ [J]. CIESC Journal, 2024, 75(2): 647-658. |
[4] | Xuejie WANG, Guoqing CUI, Wenhan WANG, Yang YANG, Congkai WANG, Guiyuan JIANG, Chunming XU. Study on highly efficient methylcyclohexane dehydrogenation over Pt/NPC catalysts by internal electric heating [J]. CIESC Journal, 2024, 75(1): 292-301. |
[5] | Qiang ZHANG, Xianfei WANG, Kai WANG, Guangsheng LUO, Zhongkai LU. Advances in metal-free catalysts in copolymerization of epoxides and cyclic anhydrides [J]. CIESC Journal, 2024, 75(1): 60-73. |
[6] | Xinyu WANG, Yongtao WANG, Jia YAO, Haoran LI. Progress in the application of electron paramagnetic resonance in fundamental chemical engineering research [J]. CIESC Journal, 2024, 75(1): 74-82. |
[7] | Jialin ZHANG, Dawei XU, Yue GAO, Xingang LI. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams [J]. CIESC Journal, 2024, 75(1): 312-321. |
[8] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[11] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[12] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[13] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[14] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[15] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||