CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3325-3338.DOI: 10.11949/0438-1157.20241394
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Pengguo XU1(
), Ziheng MENG2, Ganyu ZHU2(
), Huiquan LI2,3, Chenye WANG2, Zhenhua SUN2, Guocai TIAN1(
)
Received:2024-12-02
Revised:2024-12-29
Online:2025-08-13
Published:2025-07-25
Contact:
Ganyu ZHU, Guocai TIAN
徐鹏国1(
), 孟子衡2, 朱干宇2(
), 李会泉2,3, 王晨晔2, 孙振华2, 田国才1(
)
通讯作者:
朱干宇,田国才
作者简介:徐鹏国(1999—),男,硕士研究生,1741379137@qq.com
基金资助:CLC Number:
Pengguo XU, Ziheng MENG, Ganyu ZHU, Huiquan LI, Chenye WANG, Zhenhua SUN, Guocai TIAN. Study on deep carbonization process and kinetics of crude lithium carbonate with CO2 microbubbles[J]. CIESC Journal, 2025, 76(7): 3325-3338.
徐鹏国, 孟子衡, 朱干宇, 李会泉, 王晨晔, 孙振华, 田国才. 粗碳酸锂CO2微气泡深度碳化工艺与动力学研究[J]. 化工学报, 2025, 76(7): 3325-3338.
Add to citation manager EndNote|Ris|BibTeX
| 元素 | 含量/% | 元素 | 含量/% |
|---|---|---|---|
| Al | 0 | K | 0 |
| Ca | 0 | Mg | 0.009 |
| Cd | 0 | Mn | 0 |
| Co | 0.0006 | Na | 0.08 |
| Cr | 0 | Ni | 0.0009 |
| Cu | 0.0037 | Pb | 0 |
| Fe | 0 | Si | 0.0019 |
Table 1 Composition and content of impurities in crude lithium carbonate
| 元素 | 含量/% | 元素 | 含量/% |
|---|---|---|---|
| Al | 0 | K | 0 |
| Ca | 0 | Mg | 0.009 |
| Cd | 0 | Mn | 0 |
| Co | 0.0006 | Na | 0.08 |
| Cr | 0 | Ni | 0.0009 |
| Cu | 0.0037 | Pb | 0 |
| Fe | 0 | Si | 0.0019 |
| 碳化工艺 | CO2气体量/(104 m3) | 功率/kW | 时间/h | 能耗/(kWh/t) | 成本/(CNY/t) |
|---|---|---|---|---|---|
| 鼓泡工艺 | 72.18 | 7.22 | 8000 | 57.74 | 57.74 |
| 微气泡工艺 | 32.25 | 5.49 | 3520 | 19.35 | 19.35 |
Table 2 The cost of producing 1000 t of lithium carbonate per year for two processes
| 碳化工艺 | CO2气体量/(104 m3) | 功率/kW | 时间/h | 能耗/(kWh/t) | 成本/(CNY/t) |
|---|---|---|---|---|---|
| 鼓泡工艺 | 72.18 | 7.22 | 8000 | 57.74 | 57.74 |
| 微气泡工艺 | 32.25 | 5.49 | 3520 | 19.35 | 19.35 |
| 元素 | 含量/10-6 | 高纯指标/10-6 |
|---|---|---|
| Al | 0 | 3 |
| Ca | 0 | 30 |
| Cd | 0 | — |
| Co | 0.6 | — |
| Cr | 0 | — |
| Cu | 0.5 | 2 |
| Fe | 0 | 3 |
| K | 0 | 10 |
| Mg | 2.5 | 10 |
| Mn | 0 | 2 |
| Na | 24 | 20 |
| Ni | 0.7 | 2 |
| Pb | 0 | 2 |
| Si | 0 | 30 |
Table 3 High-purity lithium carbonate composition analysis
| 元素 | 含量/10-6 | 高纯指标/10-6 |
|---|---|---|
| Al | 0 | 3 |
| Ca | 0 | 30 |
| Cd | 0 | — |
| Co | 0.6 | — |
| Cr | 0 | — |
| Cu | 0.5 | 2 |
| Fe | 0 | 3 |
| K | 0 | 10 |
| Mg | 2.5 | 10 |
| Mn | 0 | 2 |
| Na | 24 | 20 |
| Ni | 0.7 | 2 |
| Pb | 0 | 2 |
| Si | 0 | 30 |
| 条件 | 膜扩散控制x | 化学反应控制1-(1-x)1/3 | ||||
|---|---|---|---|---|---|---|
| k1/min-1 | R2 | kr/min-1 | R2 | |||
| particle size/mm | ||||||
| 250 | 0.00653 | 0.9942 | 0.00574 | 0.9549 | ||
| 184 | 0.00706 | 0.9923 | 0.00652 | 0.9536 | ||
| 133 | 0.00736 | 0.9956 | 0.00682 | 0.9719 | ||
| 124 | 0.00754 | 0.9920 | 0.00689 | 0.9634 | ||
| CO2 gas flow/(ml/min) | ||||||
| 20 | 0.00321 | 0.9911 | 0.00192 | 0.9750 | ||
| 40 | 0.00407 | 0.9904 | 0.00237 | 0.9601 | ||
| 60 | 0.00432 | 0.9905 | 0.00280 | 0.9635 | ||
| 80 | 0.00503 | 0.9903 | 0.00345 | 0.9276 | ||
| 100 | 0.00746 | 0.9905 | 0.00668 | 0.9638 | ||
| 120 | 0.00689 | 0.9920 | 0.00818 | 0.9454 | ||
| 140 | 0.00755 | 0.9900 | 0.00758 | 0.9713 | ||
| rotate speed/(r/min) | ||||||
| 200 | 0.00556 | 0.9901 | 0.00390 | 0.9993 | ||
| 250 | 0.00618 | 0.9909 | 0.00428 | 0.9951 | ||
| 300 | 0.00689 | 0.9920 | 0.00610 | 0.9747 | ||
| 350 | 0.00712 | 0.9935 | 0.00600 | 0.9475 | ||
| 400 | 0.00746 | 0.9900 | 0.00711 | 0.9674 | ||
| temperature/℃ | ||||||
| 15 | 0.00674 | 0.9911 | 0.00628 | 0.9631 | ||
| 20 | 0.00652 | 0.9907 | 0.00521 | 0.9871 | ||
| 25 | 0.00642 | 0.9972 | 0.00450 | 0.9811 | ||
| 30 | 0.00689 | 0.9924 | 0.00610 | 0.9747 | ||
| 35 | 0.00606 | 0.9904 | 0.00426 | 0.9948 | ||
| liquid-solid ratio | ||||||
| 50∶1 | 0.00674 | 0.9902 | 0.00541 | 0.9795 | ||
| 40∶1 | 0.00652 | 0.9901 | 0.00609 | 0.9752 | ||
| 30∶1 | 0.00689 | 0.9923 | 0.00610 | 0.9747 | ||
| 20∶1 | 0.00555 | 0.9902 | 0.00315 | 0.9951 | ||
| 10∶1 | 0.00518 | 0.9904 | 0.00268 | 0.9879 | ||
Table 4 Correlation coefficients of k1,k2
| 条件 | 膜扩散控制x | 化学反应控制1-(1-x)1/3 | ||||
|---|---|---|---|---|---|---|
| k1/min-1 | R2 | kr/min-1 | R2 | |||
| particle size/mm | ||||||
| 250 | 0.00653 | 0.9942 | 0.00574 | 0.9549 | ||
| 184 | 0.00706 | 0.9923 | 0.00652 | 0.9536 | ||
| 133 | 0.00736 | 0.9956 | 0.00682 | 0.9719 | ||
| 124 | 0.00754 | 0.9920 | 0.00689 | 0.9634 | ||
| CO2 gas flow/(ml/min) | ||||||
| 20 | 0.00321 | 0.9911 | 0.00192 | 0.9750 | ||
| 40 | 0.00407 | 0.9904 | 0.00237 | 0.9601 | ||
| 60 | 0.00432 | 0.9905 | 0.00280 | 0.9635 | ||
| 80 | 0.00503 | 0.9903 | 0.00345 | 0.9276 | ||
| 100 | 0.00746 | 0.9905 | 0.00668 | 0.9638 | ||
| 120 | 0.00689 | 0.9920 | 0.00818 | 0.9454 | ||
| 140 | 0.00755 | 0.9900 | 0.00758 | 0.9713 | ||
| rotate speed/(r/min) | ||||||
| 200 | 0.00556 | 0.9901 | 0.00390 | 0.9993 | ||
| 250 | 0.00618 | 0.9909 | 0.00428 | 0.9951 | ||
| 300 | 0.00689 | 0.9920 | 0.00610 | 0.9747 | ||
| 350 | 0.00712 | 0.9935 | 0.00600 | 0.9475 | ||
| 400 | 0.00746 | 0.9900 | 0.00711 | 0.9674 | ||
| temperature/℃ | ||||||
| 15 | 0.00674 | 0.9911 | 0.00628 | 0.9631 | ||
| 20 | 0.00652 | 0.9907 | 0.00521 | 0.9871 | ||
| 25 | 0.00642 | 0.9972 | 0.00450 | 0.9811 | ||
| 30 | 0.00689 | 0.9924 | 0.00610 | 0.9747 | ||
| 35 | 0.00606 | 0.9904 | 0.00426 | 0.9948 | ||
| liquid-solid ratio | ||||||
| 50∶1 | 0.00674 | 0.9902 | 0.00541 | 0.9795 | ||
| 40∶1 | 0.00652 | 0.9901 | 0.00609 | 0.9752 | ||
| 30∶1 | 0.00689 | 0.9923 | 0.00610 | 0.9747 | ||
| 20∶1 | 0.00555 | 0.9902 | 0.00315 | 0.9951 | ||
| 10∶1 | 0.00518 | 0.9904 | 0.00268 | 0.9879 | ||
| [1] | Hao J C, Hao J Y, Liu D F, et al. Maximizing resource recovery: a green and economic strategy for lithium extraction from spent ternary batteries[J]. Journal of Hazardous Materials, 2024, 472: 134472. |
| [2] | 蒋晨啸, 陈秉伦, 张东钰, 等. 我国盐湖锂资源分离提取进展[J]. 化工学报, 2022, 73(2): 481-503. |
| Jiang C X, Chen B L, Zhang D Y, et al. Progress in isolating lithium resources from China salt lake brine[J]. CIESC Journal, 2022, 73(2): 481-503. | |
| [3] | 彭丹, 卢俊杰, 倪文静, 等. 高电压钴酸锂电池电解液研究进展[J]. 化工学报, 2024, 75(9): 3028-3040. |
| Peng D, Lu J J, Ni W J, et al. Research progress of functional electrolyte for high-voltage LiCoO2 battery[J]. CIESC Journal, 2024, 75(9): 3028-3040. | |
| [4] | Bo W B, Zhang Y M, Liu H, et al. Optimization of precursor structure by dispersants to promote nitrogen reduction process to prepare high-quality VN[J]. Journal of Alloys and Compounds, 2024, 1006: 176285. |
| [5] | Bandini G, Caposciutti G, Marracci M, et al. Characterization of lithium-batteries for high power applications[J]. Journal of Energy Storage, 2022, 50: 104607. |
| [6] | Ali Z M, Calasan M, Gandoman F H, et al. Review of batteries reliability in electric vehicle and E-mobility applications[J]. Ain Shams Engineering Journal, 2024, 15(2): 102442. |
| [7] | Li Z, Xu Z T, Chen Z B, et al. An empirical analysis of electric vehicles' charging patterns[J]. Transportation Research Part D: Transport and Environment, 2023, 117: 103651. |
| [8] | Bai X T, Yu T W, Ren Z M, et al. Key issues and emerging trends in sulfide all solid state lithium battery[J]. Energy Storage Materials, 2022, 51: 527-549. |
| [9] | Ni C Q, Liu C, Wang J Y, et al. Advances and promotion strategies of processes for extracting lithium from mineral resources[J]. Journal of Industrial and Engineering Chemistry, 2024, 140: 47-64. |
| [10] | 苏慧, 朱兆武, 王丽娜, 等. 矿石资源中锂的提取与回收研究进展[J]. 化工学报, 2019, 70(1): 10-23. |
| Su H, Zhu Z W, Wang L N, et al. Research progress in extraction and recovery of lithium from hard-rock ores[J]. CIESC Journal, 2019, 70(1): 10-23. | |
| [11] | Wang J J, Yue X Y, Wang P F, et al. Electrochemical technologies for lithium recovery from liquid resources: a review[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111813. |
| [12] | Gmar S, Chagnes A. Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources[J]. Hydrometallurgy, 2019, 189: 105124. |
| [13] | Meshram P, Pandey B D, Mankhand T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. |
| [14] | Zhang L G, Xu Z M. Towards minimization of secondary wastes: element recycling to achieve future complete resource recycling of electronic wastes[J]. Waste Management, 2019, 96: 175-180. |
| [15] | Xu C J, Dai Q, Gaines L, et al. Future material demand for automotive lithium-based batteries[J]. Communications Materials, 2020, 1: 99. |
| [16] | Mends E A, Chu P B. Lithium extraction from unconventional aqueous resources—a review on recent technological development for seawater and geothermal brines[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110710. |
| [17] | Zhao T Y, Li W L, Traversy M, et al. A review on the recycling of spent lithium iron phosphate batteries[J]. Journal of Environmental Management, 2024, 351: 119670. |
| [18] | Rautela R, Yadav B R, Kumar S. A review on technologies for recovery of metals from waste lithium-ion batteries[J]. Journal of Power Sources, 2023, 580: 233428. |
| [19] | Li P W, Luo S H, Zhang L, et al. Progress, challenges, and prospects of spent lithium-ion batteries recycling: a review[J]. Journal of Energy Chemistry, 2024, 89: 144-171. |
| [20] | Biswal B K, Zhang B, Thi Minh Tran P, et al. Recycling of spent lithium-ion batteries for a sustainable future: recent advancements[J]. Chemical Society Reviews, 2024, 53(11): 5552-5592. |
| [21] | Jiang S Q, Nie C C, Li X G, et al. Review on comprehensive recycling of spent lithium-ion batteries: a full component utilization process for green and sustainable production[J]. Separation and Purification Technology, 2023, 315: 123684. |
| [22] | Xu R, Luo S, Li W Z, et al. Clean process for selective recovery of lithium carbonate from waste lithium-bearing aluminum electrolyte slag[J]. Industrial & Engineering Chemistry Research, 2023, 62(36): 14537-14547. |
| [23] | Wang W, Chen W J, Liu H T. Hydrometallurgical preparation of lithium carbonate from lithium-rich electrolyte[J]. Hydrometallurgy, 2019, 185: 88-92. |
| [24] | Chen N, Zhou E, Duan D P, et al. Mechanochemistry synthesis of high purity lithium carbonate[J]. Korean Journal of Chemical Engineering, 2017, 34(10): 2748-2755. |
| [25] | Linneen N, Bhave R, Woerner D. Purification of industrial grade lithium chloride for the recovery of high purity battery grade lithium carbonate[J]. Separation and Purification Technology, 2019, 214: 168-173. |
| [26] | Liu W, Chu, G W, Li S C, et al. Preparation of lithium carbonate by thermal decomposition in a rotating packed bed reactor[J]. Chemical Engineering Journal, 2019, 377: 119929. |
| [27] | 戴江洪, 王宏岩, 李平. 高纯碳酸锂制备研究进展[J]. 中国有色冶金, 2020, 49(1): 49-53. |
| Dai J H, Wang H Y, Li P. Research development of preparation of high purity lithium carbonate[J]. China Nonferrous Metallurgy, 2020, 49(1): 49-53. | |
| [28] | 殷海青, 马祎明, 万旭兴, 等. 碳酸锂气液固三相反应结晶过程研究[J]. 化工学报, 2022, 73(3): 1207-1220. |
| Yin H Q, Ma Y M, Wan X X, et al. Research of lithium carbonate three-phase reactive crystallization process[J]. CIESC Journal, 2022, 73(3): 1207-1220. | |
| [29] | 张燕, 赵振中, 马朝辉, 等. 碳化法制备电池级碳酸锂工艺优化研究[J]. 无机盐工业, 2020, 52(3): 68-71. |
| Zhang Y, Zhao Z Z, Ma Z H, et al. Optimization of process for preparation of battery grade lithium carbonate preparation by carbonization method[J]. Inorganic Chemicals Industry, 2020, 52(3): 68-71. | |
| [30] | Wang J L, Hu H Z. Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate[J]. Journal of Materials Research and Technology, 2020, 9(5): 9498-9505. |
| [31] | Lu J J, Tian M H, Cao J W, et al. Preparation of battery-grade lithium carbonate by microbubble enhanced CO2 gas-liquid reactive crystallization[J]. Green Chemistry, 2022, 24(23): 9084-9093. |
| [32] | Cheng J, Lai X, Ye Q, et al. A novel jet-aerated tangential swirling-flow plate photobioreactor generates microbubbles that enhance mass transfer and improve microalgal growth[J]. Bioresource Technology, 2019, 288: 121531. |
| [33] | Li Z Q, Wang Y D, Li K X, et al. CFD-DEM modeling of particle dissolution behavior in stirred tanks[J]. Powder Technology, 2024, 442: 119894. |
| [34] | Ho D, Kim K, Earmme T, et al. Enhancing gas-liquid volumetric mass transfer coefficient[J]. Journal of Industrial and Engineering Chemistry, 2020, 87: 1-17. |
| [35] | Jia S K, Cao X P, Wang F, et al. Renormalization group method for the turbulent mass transport two-equation model[J]. Chemical Engineering Science, 2022, 249: 117306. |
| [36] | Miranda M A, Subramani H J, Mohammad S A, et al. Kinetics of gas evolution from supersaturated oils at elevated pressures and temperatures[J]. Energy & Fuels, 2020, 34(5): 5537-5544. |
| [37] | Wang N J, Gao Y H, Pang H R, et al. Study on physical and mechanical properties of micro-cement grouting materials with different water-cement ratio[J]. Journal of Physics: Conference Series, 2022, 2381(1): 012099. |
| [38] | Islas H, Flores M U, Reyes I A, et al. Determination of the dissolution rate of hazardous jarosites in different conditions using the shrinking core kinetic model[J]. Journal of Hazardous Materials, 2020, 386: 121664. |
| [39] | Demirkıran N. A study on dissolution of ulexite in ammonium acetate solutions[J]. Chemical Engineering Journal, 2008, 141(1/2/3): 180-186. |
| [40] | Levenspiel O. Chemical Reaction Engineering[M]. 3rd ed. Hoboken: Wiley, 1998. |
| [1] | Xin WU, Jianying GONG, Xiangyu LI, Yutao WANG, Xiaolong YANG, Zhen JIANG. Experimental study on the droplet motion on the hydrophobic surface under ultrasonic excitation [J]. CIESC Journal, 2025, 76(S1): 133-139. |
| [2] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| [3] | Xiaoyu ZHANG, Jinxin LAN, Xin LI, Shilin CAO, Haili GAO, Xiaojuan MA. Study on dissolution of cellulose by [Emim]Ac-[Emim]OH-DMSO ternary system [J]. CIESC Journal, 2025, 76(7): 3226-3234. |
| [4] | Zhaoming MAI, Yingtao WU, Wei WANG, Haibao MU, Zuohua HUANG, Chenglong TANG. Study on nonlinear ignition characteristics and dilution gas effect of n-dodecane methane dual fuel [J]. CIESC Journal, 2025, 76(6): 3115-3124. |
| [5] | Qingping ZHAO, Min ZHANG, Hui ZHAO, Gang WANG, Yongfu QIU. Hydrogen bond effect and kinetic studies on hydroesterification of ethylene to methyl propionate [J]. CIESC Journal, 2025, 76(6): 2701-2713. |
| [6] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [7] | Zhongzhou ZHANG, Yifei LI, Shuang CHEN, Junfeng QIANG, Yuhong LIU. Properties of epoxy polyhedral oligosiloxanes decorative biphenyl phenolics modified novolac resin [J]. CIESC Journal, 2025, 76(4): 1809-1819. |
| [8] | Yuanhua LI, Siqi LING, Kejun FENG, Ying FENG, Yuching KUO, Shihhuan HSIEH. Construction and catalytic application of immobilized lipase microreactors based on cMOFs for the synthesis of mandelic acid [J]. CIESC Journal, 2025, 76(3): 1170-1179. |
| [9] | Shen YAN, Yue XI, Shengyu ZHANG, Xiaodong CHEN, Duo WU. Determination of intracrystalline diffusivity for organic vapors in ZSM-5 using the IGC-ZLC method [J]. CIESC Journal, 2025, 76(3): 1076-1083. |
| [10] | Meng YANG, Xiaoqian DING, Tao YU, Chang LIU, Chenglong TANG, Zuohua HUANG. Experimental and kinetic studies for the ignition characteristic of the green propellant of methane/nitrous oxide [J]. CIESC Journal, 2025, 76(3): 1221-1229. |
| [11] | Chuanchao HE, Jinghong ZHOU, Yueqiang CAO, Yao SHI, Xinggui ZHOU. Bed-particle dual scale coupled simulation on Ag/SiO2 catalyzed hydrogenation of oxalate to methyl glycolate [J]. CIESC Journal, 2025, 76(2): 654-666. |
| [12] | Zilin PENG, Lei ZHOU, Qinghang DENG, Guanghua YE, Xinggui ZHOU. Kinetics of 3D NAND flash wet etching with phosphoric acid under the influence of H2SiO3 [J]. CIESC Journal, 2025, 76(2): 645-653. |
| [13] | Chuangde ZHANG, Li CHEN. Pore-scale study of effects of preferential path on multiphase reactive transport process in porous media [J]. CIESC Journal, 2025, 76(1): 161-172. |
| [14] | Yanping JIA, Yanju MA, Wenxin GUAN, Bin YANG, Jian ZHANG, Lanhe ZHANG. Process conditions optimization and degradation mechanism of dye wastewater by Fe0/H2O2 system using response surface methodology [J]. CIESC Journal, 2025, 76(1): 348-362. |
| [15] | Shan GUO, Yu TIAN, Yongbin XU, Peng WANG, Zhiming LIU. Synthesis of a high-efficacy medium-entropy alloy catalyst via the recycling of spent batteries and its subsequent performance evaluation [J]. CIESC Journal, 2025, 76(1): 231-240. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||