CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5770-5778.DOI: 10.11949/0438-1157.20211028
• Energy and environmental engineering • Previous Articles Next Articles
Wenyan WANG1,3(),Guangyi ZHANG2,3(),Huibo MENG1,Xinyu ZHU1,3,Jianling ZHANG3,Guangwen XU1
Received:
2021-07-23
Revised:
2021-09-06
Online:
2021-11-12
Published:
2021-11-05
Contact:
Guangyi ZHANG
王文燕1,3(),张光义2,3(),孟辉波1,朱新宇1,3,张建岭3,许光文1
通讯作者:
张光义
作者简介:
王文燕(1995—),女,硕士研究生,基金资助:
CLC Number:
Wenyan WANG, Guangyi ZHANG, Huibo MENG, Xinyu ZHU, Jianling ZHANG, Guangwen XU. Furfural residue pyrolysis characteristics and the effect of its pyrolysis products on in-situ control of NOx emission from its combustion flue gas[J]. CIESC Journal, 2021, 72(11): 5770-5778.
王文燕, 张光义, 孟辉波, 朱新宇, 张建岭, 许光文. 糠醛渣热解特性及热解挥发产物对其燃烧烟气原位控氮作用[J]. 化工学报, 2021, 72(11): 5770-5778.
Add to citation manager EndNote|Ris|BibTeX
Proximate analysis/%(mass, dry) | Ultimate analysis/%(mass, dry) | ||||||
---|---|---|---|---|---|---|---|
Ash | Volatile | Fixed carbon | C | H | O① | N | S |
21.93 | 64.61 | 13.46 | 42.74 | 4.46 | 38.23 | 0.58 | 0.53 |
Table 1 Proximate and ultimate analyses of furfural residues
Proximate analysis/%(mass, dry) | Ultimate analysis/%(mass, dry) | ||||||
---|---|---|---|---|---|---|---|
Ash | Volatile | Fixed carbon | C | H | O① | N | S |
21.93 | 64.61 | 13.46 | 42.74 | 4.46 | 38.23 | 0.58 | 0.53 |
Fig.6 NOx emission concentration and the N conversion rate during/after combustion (at 900℃) of the volatiles from furfural residue pyrolysis at different temperatures
Fig.8 NOx emission concentration and NOx reduction rate during coupled combustion of volatiles and semi-cokes prepared at different pyrolysis temperatures
Fig.9 Effects of the primary and secondary air ratios on the NOx emission concentration, the N conversion rate and the NOx reduction rate for coupled combustion of volatiles and semi-coke
1 | Nishiguchi S, Tabata T. Assessment of social, economic, and environmental aspects of woody biomass energy utilization: direct burning and wood pellets[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1279-1286. |
2 | 滕海鹏, 李诗媛, 吕清刚, 等. 生物质流态化燃烧黏结失流特性分析[J]. 中国电机工程学报, 2010, 30(S1): 138-143. |
Teng H P, Li S Y, Lyu Q G, et al. Defluidization of biomass combustion in fluidized bed[J]. Proceedings of the CSEE, 2010, 30(S1): 138-143. | |
3 | 李诗媛, 吕清刚, 矫维红, 等. 生物质成型燃料循环流化床燃烧试验研究[J]. 燃烧科学与技术, 2009, 15(1): 54-58. |
Li S Y, Lyu Q G, Jiao W H, et al. Experimental study on biomass briquette fuels combustion in circulating fluidized bed[J]. Journal of Combustion Science and Technology, 2009, 15(1): 54-58. | |
4 | 苏亚欣, 毛玉如, 徐璋. 燃煤氮氧化物排放控制技术[M]. 北京: 化学工业出版社, 2005: 70-118. |
Su Y X, Mao Y R, Xu Z. Control Technology of NOx Emission from Coal Combustion[M]. Beijing: Chemical Industry Press, 2005: 70-118. | |
5 | 尚校, 高士秋, 汪印, 等. 不同煤燃烧方式降低NOx排放比较及解耦燃烧应用[J]. 燃料化学学报, 2012, 40(6): 672-679. |
Shang X, Gao S Q, Wang Y, et al. Comparison of NOx reduction among different coal combustion methods and the application of decoupling combustion[J]. Journal of Fuel Chemistry and Technology, 2012, 40(6): 672-679. | |
6 | 李静海, 许光文, 杨励丹, 等. 一种抑制氮氧化物的无烟燃煤方法及燃煤炉与应用: 1110776A[P]. 1995-10-25. |
Li J H, Xu G W, Yang L D, et al. A method of coal-fired smokeless combustion for NOx suppression as well as its application in household stoves: 1110776A[P]. 1995-10-25. | |
7 | Chen H F, Zhao P T, Wang Y, et al. NO emission control during the decoupling combustion of industrial biomass wastes with a high nitrogen content[J]. Energy & Fuels, 2013, 27(6): 3186-3193. |
8 | Dong L, Gao S Q, Song W L, et al. NO reduction in decoupling combustion of biomass and biomass-coal blend[J]. Energy & Fuels, 2009, 23(1): 224-228. |
9 | Xu G W, Yao C B, Dong L. Spirits lees utilization via circulating fluidized bed decoupling combustion[C]//BIT's 3rd World Congress of Industrial Biotechnology. 2010: 311-312. |
10 | Yao C B, Dong L, Wang Y, et al. Fluidized bed pyrolysis of distilled spirits lees for adapting to its circulating fluidized bed decoupling combustion[J]. Fuel Processing Technology, 2011, 92(12): 2312-2319. |
11 | 韩振南. 高含水含氮生物质废弃物双流化床解耦燃烧基础及工业应用[D]. 北京: 中国科学院过程工程研究所, 2017. |
Han Z N. Fundamentals and industrial application of dual fluidized bed decoupling combustion of biomass waste with high water and nitrogen content[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2017. | |
12 | 杨武, 汪印, 宋扬, 等. 沉降炉中生物质热解产物的脱硝特性[J]. 过程工程学报, 2013, 13(2): 191-196. |
Yang W, Wang Y, Song Y, et al. NO reduction characteristics of biomass pyrolysis products in a drop-tube reactor [J]. The Chinese Journal of Process Engineering, 2013, 13(2): 191-196. | |
13 | Song Y, Wang Y, Yang W, et al. Reduction of NO over biomass tar in micro-fluidized bed[J]. Fuel Processing Technology, 2014, 118: 270-277. |
14 | Bunman Y, Do H S, Zeng X, et al. NO reduction by different tar agents and model compounds in a drop-tube reactor[J]. Fuel Processing Technology, 2018, 172: 187-194. |
15 | Dong L, Gao S Q, Song W L, et al. Experimental study of NO reduction over biomass char[J]. Fuel Processing Technology, 2007, 88(7): 707-715. |
16 | 张晔, 陈明强, 李峰, 等. 常压下硫酸催化玉米芯制备糠醛的实验研究[J]. 林产化学与工业, 2013, 33(5): 77-82. |
Zhang Y, Chen M Q, Li F, et al. Conversion of corncob into furfural with sulfuric acid at atmospheric pressure[J]. Chemistry and Industry of Forest Products, 2013, 33(5): 77-82. | |
17 | Sun Y, Wang Z, Liu Y, et al. A review on the transformation of furfural residue for value-added products[J]. Energies, 2019, 13(1): 21. |
18 | Xing Y, Bu L X, Sun D F, et al. High glucose recovery from direct enzymatic hydrolysis of bisulfite-pretreatment on non-detoxified furfural residues[J]. Bioresource Technology, 2015, 193: 401-407. |
19 | Yu H L, Tang Y, Xing Y, et al. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and hydrogen peroxide[J]. Bioresource Technology, 2013, 147: 29-36. |
20 | 何志鹏, 刘周恩, 李文松, 等. 粒径对弱黏结性煤与非黏结性煤共热解特性的影响[J]. 煤炭转化, 2020, 43(6): 9-16. |
He Z P, Liu Z E, Li W S, et al. Effect of particle sizes on co-pyrolysis characteristics of weak caking coal and non-caking coal[J]. Coal Conversion, 2020, 43(6): 9-16. | |
21 | 詹昊, 张晓鸿, 阴秀丽, 等. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890. |
Zhan H, Zhang X H, Yin X L, et al. Formation of nitrogenous pollutants during biomass thermo-chemical conversion[J]. Progress in Chemistry, 2016, 28(12): 1880-1890. | |
22 | Baumlin S, Broust F, Ferrer M, et al. The continuous self stirred tank reactor: measurement of the cracking kinetics of biomass pyrolysis vapours[J]. Chemical Engineering Science, 2005, 60(1): 41-55. |
23 | 王琼, 刘云云, 叶三成, 等. 玉米芯产糠醛残渣的热解利用分析[J]. 新能源进展, 2018, 6(5): 346-352. |
Wang Q, Liu Y Y, Ye S C, et al. Pyrolysis analysis of furfural residue from corncob[J]. Advances in New and Renewable Energy, 2018, 6(5): 346-352. | |
24 | Zhang R Z, Liu C Y, Yin R H, et al. Experimental and kinetic study of the NO-reduction by tar formed from biomass gasification, using benzene as a tar model component[J]. Fuel Processing Technology, 2011, 92(1): 132-138. |
25 | 牛欣, 肖军. 污泥化学链燃烧过程中氮迁移转化特性研究[J]. 燃料化学学报, 2017, 45(4): 505-512. |
Niu X, Xiao J. Nitrogen transformation in chemical looping combustion of sewage sludge[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 505-512. | |
26 | Scappin F, Stefansson S H, Haglind F, et al. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines[J]. Applied Thermal Engineering, 2012, 37: 344-352. |
27 | 葛亚昕, 张光义, 崔丽杰, 等. 高含水菌渣流化床燃烧NOx、SO2排放特性[J]. 化工学报, 2017, 68(8): 3250-3257. |
Ge Y X, Zhang G Y, Cui L J, et al. Characteristics of NOx and SO2 emission from combustion of antibiotic mycelial residue with high water content in fluidized bed reactor[J]. CIESC Journal, 2017, 68(8): 3250-3257. | |
28 | Teng H, Suuberg E M. Chemisorption of nitric oxide on char (1): Reversible nitric oxide sorption[J]. The Journal of Physical Chemistry, 1993, 97(2): 478-483. |
29 | Teng H, Suuberg E M. Chemisorption of nitric oxide on char (2): Irreversible carbon oxide formation[J]. Industrial & Engineering Chemistry Research, 1993, 32(3): 416-423. |
30 | 周志军, 周宁, 陈瑶姬, 等. 低挥发分煤燃烧特性及NOx生成规律的试验研究[J]. 中国电机工程学报, 2010, 30(29): 55-61. |
Zhou Z J, Zhou N, Chen Y J, et al. Experimental research on the combustion and NOx generation characteristics of low volatile coal[J]. Proceedings of the CSEE, 2010, 30(29): 55-61. | |
31 | 余岳溪, 高正阳, 季鹏, 等. 煤焦异相还原N2O的反应机理[J]. 化工学报, 2017, 68(1): 369-374. |
Yu Y X, Gao Z Y, Ji P, et al. Heterogeneous reduction reaction of N2O by char[J]. CIESC Journal, 2017, 68(1): 369-374. | |
32 | 方晓晴, 范垂钢, 都林, 等. 煤焦直接还原脱除烟道气氮氧化物[J]. 化工学报, 2014, 65(6): 2249-2255. |
Fang X Q, Fan C G, Du L, et al. Reduction of nitric oxide in flue gas by coal char[J]. CIESC Journal, 2014, 65(6): 2249-2255. | |
33 | Zhang G Y, Liu H, Ge Y X, et al. Gaseous emission and ash characteristics from combustion of high ash content antibiotic mycelial residue in fluidized bed and the impact of additional water vapor[J]. Fuel, 2017, 202: 66-77. |
34 | 温宏炎, 张光义, 纪德馨, 等.油泥焦流化床燃烧NOx释放特性及控制[J]. 燃料化学学报, 2019, 47(11): 1401-1408. |
Wen H Y, Zhang G Y, Ji D X, et al. Emission characteristics and control of NOx from oil sludge char fluidized bed combustion[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1401-1408. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[3] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[4] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[5] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[6] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[7] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[8] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[9] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[10] | Kaihong TANG, Xiaofeng HE, Guiqiu XU, Yang YU, Xiaofeng LIU, Tiejun GE, Ailing ZHANG. Review on combustion behavior and flame retardant research of phenolic foams [J]. CIESC Journal, 2022, 73(8): 3483-3500. |
[11] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
[12] | Yong’an CHEN, Anning ZHOU, Yunlong LI, Zhiwei SHI, Xinfu HE, Weihong JIAO. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts [J]. CIESC Journal, 2022, 73(7): 3026-3037. |
[13] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[14] | Guanyi CHEN, Tujun TONG, Rui LI, Yanshan WANG, Beibei YAN, Ning LI, Li'an HOU. Influence of pyrolysis time on sludge-derived biochar performance for peroxymonosulfate activation [J]. CIESC Journal, 2022, 73(5): 2111-2119. |
[15] | Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater [J]. CIESC Journal, 2022, 73(5): 2158-2173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||