化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3668-3679.doi: 10.11949/0438-1157.20201893

• 催化、动力学与反应器 • 上一篇    下一篇

基于生物模板制备二氧化碳加氢反应的Cu/ZnO催化剂

蔡中杰1(),田盼1,黄忠亮2,黄猛1,黄加乐1(),詹国武2(),李清彪1,3   

  1. 1.厦门大学化学化工学院,福建 厦门 351100
    2.华侨大学化工学院,福建 厦门 361021
    3.集美大学食品科学与工程学院,福建 厦门 361021
  • 收稿日期:2020-12-22 修回日期:2021-03-02 出版日期:2021-07-05 发布日期:2021-07-19
  • 通讯作者: 黄加乐,詹国武 E-mail:Zhongjie.cai@qq.com;cola@xmu.edu.cn;gwzhan@hqu.edu.cn
  • 作者简介:蔡中杰(1995—),男,硕士研究生,Zhongjie.cai@qq.com
  • 基金资助:
    国家自然科学基金项目(21536010)

Preparation of Cu/ZnO nanocatalysts based on bio-templates for CO2 hydrogenation

CAI Zhongjie1(),TIAN Pan1,HUANG Zhongliang2,HUANG Meng1,HUANG Jiale1(),ZHAN Guowu2(),LI Qingbiao1,3   

  1. 1.College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 351100, Fujian, China
    2.College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
    3.College of Food and Biology Engineering, Jimei University, Xiamen 361021, Fujian, China
  • Received:2020-12-22 Revised:2021-03-02 Online:2021-07-05 Published:2021-07-19
  • Contact: HUANG Jiale,ZHAN Guowu E-mail:Zhongjie.cai@qq.com;cola@xmu.edu.cn;gwzhan@hqu.edu.cn

摘要:

采用油菜花粉作为生物模板制备了具有多层次孔结构的ZnO,再通过浸渍还原法将Cu负载于ZnO上制备了具有不同结构的Cu/ZnO负载型催化剂(bio-CZ-500),研究发现在500℃条件下焙烧制备的bio-CZ-500催化剂在CO2加氢反应中经过100 h测试活性几乎不变,同时甲醇选择性高达81%。相比之下,无生物模板制备的Cu/ZnO催化剂显示出较低甲醇选择性(50%),且催化剂在12 h内快速失活。通过透射电镜、扫描电镜、氮气吸脱附、红外光谱、X射线衍射、X射线光电子能谱、接触角测试、程序升温等表征技术揭示了bio-CZ-500催化剂具有多级孔碳结构、丰富的Cu-ZnO活性界面和较高的水接触角。催化剂的弱亲水性加快了副产物水的扩散,促进了中间体分解制甲醇,同时抑制了铜颗粒的烧结失活,从而提高甲醇的选择性与催化剂的稳定性。该工作为制备高效稳定的Cu基工业催化剂提供了新方法。

关键词: 生物模板, CO2加氢, Cu/ZnO催化剂, Cu-ZnO界面, 稳定性

Abstract:

Rape pollen was used as a biological template to prepare ZnO with a multi-layered pore structure, and Cu/ZnO supported catalysts (bio-CZ-500) with different structures were prepared by dipping and reducing Cu on ZnO. The obtained Cu/ZnO catalyst (namely, bio-CZ-500 upon calcination under 500℃) exhibited a high methanol selectivity of 81% in CO2 hydrogenation and the activity could remain almost unchanged over 100 h on stream. However, the Cu/ZnO catalyst prepared by a conventional deposition-precipitation method exhibited much lower methanol selectivity (50%) and a rapid deactivation within 12 h under the same operation conditions. Based on series of characterization results, including TEM, SEM, N2 physisorption, FTIR, XRD, XPS, contact angle analysis, and temperature-programmed techniques, etc., it was revealed that the bio-CZ-500 catalyst had a hierarchically porous carbon structure, abundant Cu-ZnO active interfaces, and a relatively larger water contact angle. The relative hydrophobicity of the bio-CZ-500 catalyst surface could accelerate the desorption of the by-product H2O, promote the transformation of reaction intermediates to methanol, and also inhibit the sintering of copper, which led to the enhancement of both methanol selectivity and catalyst stability. It is believed that this work will provide a novel synthetic strategy to fabricate highly efficient and stable Cu-based catalysts for industrial application.

Key words: bio-template, CO2 hydrogenation, Cu/ZnO catalyst, Cu-ZnO interface, stability

中图分类号: 

  • TQ 018

图1

bio-CZ-500催化剂与chem-CZ催化剂的制备流程示意图"

图2

原始花粉的扫描电镜图[(a)~(c)];不同焙烧温度下制备的bio-ZnO的扫描电镜图: 500℃[(d)~(f)],600℃[(g)~(i)],700℃[(j)~(l)][其中图(d)、(g)、(j)中插图分别为该焙烧后样品的照片]"

图3

沉积沉淀法制备的chem-ZnO的扫描电镜图"

图4

不同样品的氮气吸脱附曲线(内插图为孔径分布)(a);红外谱图(methanol表示甲醇洗涤样品) (b); ZnO载体的XRD谱图(c);负载Cu后催化剂的XRD谱图(d)"

图5

未焙烧Pollen-ZnO样品的热重图"

图6

反应温度对两种催化剂活性的影响(内插图为催化剂相应的模型)(a);Cu/Zn摩尔比对bio-CZ-500催化性能的影响(b);四种催化剂的活性评价结果(c);bio-CZ-500与chem-CZ催化剂的稳定性评价结果(图中实心图例代表bio-CZ-500,空心图例代表chem-CZ)(d)"

图7

反应前的bio-CZ-500催化剂的透射电镜图[(a)~(c)];反应前的chem-CZ催化剂的透射电镜图[(d)~(f)];[其中图(b)、(e)中内插图为Cu颗粒的粒径分布]"

图8

反应后的bio-CZ-500催化剂的TEM图[(a)~(c)];反应后的chem-CZ催化剂的TEM图[(d)~(f)][其中图(b)、(e)中的内插图为Cu颗粒的粒径分布]"

图9

反应前后bio-CZ-500与chem-CZ催化剂的XPS谱图"

图10

bio-CZ-500与chem-CZ催化剂的H2程序升温还原谱图"

图11

Cu/ZnO催化剂的结构与催化活性之间的构效关系"

1 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1): 3-8.
Jin Y, Zhou Y C, Hu S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1): 3-8.
2 刘昌俊, 郭秋婷, 叶静云, 等. 二氧化碳转化催化剂研究进展及相关问题思考[J]. 化工学报, 2016, 67(1): 6-13.
Liu C J, Guo Q T, Ye J Y, et al. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6-13.
3 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285.
Gong J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4): 1282-1285.
4 Liu Y T, Deng D H, Bao X H. Catalysis for selected C1 chemistry[J]. Chem, 2020, 6(10): 2497-2514.
5 石磊, 张婉莹, 王玉鑫, 等. 低温甲醇合成研究进展[J]. 化工学报, 2015, 66(9): 3333-3340.
Shi L, Zhang W Y, Wang Y X, et al. Research developments of low-temperature methanol synthesis[J]. CIESC Journal, 2015, 66(9): 3333-3340.
6 邵光印, 张玉龙, 张征湃, 等. 不同硅铝比ZSM-5负载铁基催化剂二氧化碳加氢性能[J]. 化工学报, 2017, 68(2): 670-678.
Shao G Y, Zhang Y L, Zhang Z P, et al. CO2 hydrogenation over Fe catalysts supported on ZSM-5 zeolite with different ratios of Si/Al[J]. CIESC Journal, 2017, 68(2): 670-678.
7 Jiang X, Nie X W, Guo X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034.
8 Cai Z J, Dai J J, Li W, et al. Pd supported on MIL-68(In)-derived In2O3 nanotubes as superior catalysts to boost CO2 hydrogenation to methanol[J]. ACS Catalysis, 2020, 10(22): 13275-13289.
9 Liu X, Zhan G W, Wu J Y, et al. Preparation of integrated CuO/ZnO/OS nanocatalysts by using acid-etched oyster shells as a support for CO2 hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7162-7173.
10 Zhao F G, Zhan G W, Zhou S F. Intercalation of laminar Cu–Al LDHs with molecular TCPP(M) (M = Zn, Co, Ni, and Fe) towards high-performance CO2 hydrogenation catalysts[J]. Nanoscale, 2020, 12(24): 13145-13156.
11 胡菊, 潘亚林, 黎汉生, 等. 铈改性甲醇合成铜基催化剂的制备及其性能[J]. 化工学报, 2014, 65(7): 2770-2775.
Hu J, Pan Y L, Li H S, et al. Preparation and properties of cerium modified Cu-based catalysts for methanol synthesis[J]. CIESC Journal, 2014, 65(7): 2770-2775.
12 Kattel S, Liu P, Chen J G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface[J]. J. Am. Chem. Soc., 2017, 139(29): 9739-9754.
13 Kattel S, Ramirez P J, Chen J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331):1296-1299.
14 Behrens M, Studt F, Kasatkin I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897.
15 应卫勇, 房鼎业, 姚佩芳, 等. 甲醇合成铜基催化剂硫化氢中毒研究(Ⅰ):硫化氢中毒本征失活动力学[J]. 化工学报, 1992, 43(2): 133-138.
Ying W Y, Fang D Y, Yao P F, et al. Hydrogen sulfide poisoning of methanol synthesis Cu-based catalyst (I): Intrinsic deactivation kinetics[J]. Journal of Chemical Industry and Engineering (China), 1992, 43(2): 133-138.
16 Lunkenbein T, Schumann J, Behrens M, et al. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions[J]. Angew. Chem. Int. Ed. Engl., 2015, 54(15): 4544-4548.
17 Behrens M, Furche A, Kasatkin I, et al. The potential of microstructural optimization in metal/oxide catalysts: higher intrinsic activity of copper by partial embedding of copper nanoparticles[J]. ChemCatChem, 2010, 2(7): 816-818.
18 Behrens M. Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts[J]. Journal of Catalysis, 2009, 267(1): 24-29.
19 Sun Y H, Chen L M, Bao Y F, et al. Roles of nitrogen species on nitrogen-doped CNTs supported Cu- ZrO2 system for carbon dioxide hydrogenation to methanol[J]. Catalysis Today, 2018, 307: 212-223.
20 Wang Y H, Gao W G, Li K Z, et al. Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu-ZnO-ZrO2 [J]. Chem, 2020, 6(2): 419-430.
21 Wang Y, Kattel S, Gao W, et al. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol[J]. Nature Communications, 2019, 10(1): 1166.
22 姜霞, 李雯, 郭云龙, 等. 生物模板法制备金属氧化物及其催化应用研究进展[J]. 化工进展, 2019, 38(1): 485-494.
Jiang X, Li W, Guo Y L, et al. Progress on bio-templated synthesis of metal oxides and their catalytic applications[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 485-494.
23 Liu X, Dai J J, Li W, et al. Green fabrication of integrated Au/CuO/oyster shell nanocatalysts with oyster shells as alternative supports for CO oxidation[J]. ACS Sustainable Chemistry & Engineering, 2019,7(21): 17768-17777.
24 陈彰旭,郑炳云,李先学, 等. 模板法制备纳米材料研究进展[J]. 化工进展, 2010, 29(1): 94-99.
Chen Z X, Zheng B Y, Li X X, et al. Progress in the preparation of nanomaterials employing template method[J]. Chemical Industry and Engineering Progress, 2010, 29(1): 94-99.
25 Wang K C, Li W, Huang J J, et al. Enhanced active site extraction from perovskite LaCoO3 using encapsulated PdO for efficient CO2 methanation[J]. Journal of Energy Chemistry, 2021, 53: 9-19.
26 Li W, Wang K C, Zhan G W, et al. Hydrogenation of CO2 to dimethyl ether over tandem catalysts based on biotemplated hierarchical ZSM-5 and Pd/ZnO[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(37): 14058-14070.
27 Jiang X, Liu Y, Hao H J, et al. Rape pollen-templated synthesis of C,N self-doped hierarchical TiO2 for selective hydrogenation of 1, 3-butadiene[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 882-888.
28 Pustovarenko A, Dikhtiarenko A, Bavykina A, et al. Metal-organic framework-derived synthesis of cobalt indium catalysts for the hydrogenation of CO2 to methanol[J]. ACS Catalysis, 2020, 10(9): 5064-5076.
29 Schumann J, Eichelbaum M, Lunkenbein T, et al. Promoting strong metal support interaction: doping ZnO for enhanced activity of Cu/ZnO:M (M = Al, Ga, Mg) catalysts[J]. ACS Catalysis, 2015, 5(6): 3260-3270.
30 van den Berg R, Prieto G, Korpershoek G, et al. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis[J]. Nature Communications, 2016, 7: 13057.
31 Huang C L,Wen J J, Sun Y H, et al. CO2 hydrogenation to methanol over Cu/ZnO plate model catalyst: effects of reducing gas induced Cu nanoparticle morphology[J]. Chemical Engineering Journal, 2019, 374: 221-230.
32 凌晨, 蒋新, 汪志勇, 等. 微反应器中的混合对Cu-ZnO催化剂微结构形成过程的影响[J]. 化工学报, 2018, 69(2): 718-724.
Ling C, Jiang X, Wang Z Y, et al. Influence of mixing inside microreactor on microstructural evolution of Cu-ZnO catalyst[J]. CIESC Journal, 2018, 69(2): 718-724.
33 Liao F L, Huang Y Q, Ge J W, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials' interface in selective hydrogenation of CO2 to CH3OH[J]. Angew. Chem. Int. Ed. Engl., 2011, 50(9): 2162-2165.
34 曹晨熙, 陈天元, 丁晓旭, 等. 负载型铟基催化剂二氧化碳加氢动力学研究[J]. 化工学报, 2019, 70(10): 3985-3993.
Cao C X, Chen T Y, Ding X X, et al. Kinetics study on supported indium-based catalysts in carbon dioxide hydrogenation[J]. CIESC Journal, 2019, 70(10): 3985-3993.
35 Zhao F G, Fan L L, Xu K J, et al. Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO2 hydrogenation to methanol[J]. Journal of CO2 Utilization, 2019, 33: 222-232.
36 Liu T K, Hong X L, Liu G L. In situ generation of the Cu@3D-ZrOx framework catalyst for selective methanol synthesis from CO2/H2[J]. ACS Catalysis, 2020, 10(1): 93-102.
[1] 段凌暄, 姚光晓, 江亮, 王世珍. 耐有机溶剂氨基酸脱氢酶基因挖掘与非天然氨基酸的非水相合成[J]. 化工学报, 2021, 72(7): 3757-3767.
[2] 谢钦崟, 黄晓连, 李元, 李玲, 葛雪惠, 邱挺. TiO2平板微反应器设计优化及光催化性能研究[J]. 化工学报, 2021, 72(7): 3626-3636.
[3] 王宗旭,李紫欣,白璐,董海峰,张香平. 固/液界面纳米气泡形成及稳定性研究进展[J]. 化工学报, 2021, 72(7): 3466-3477.
[4] 韩维辰, 王佳铭, 贺曼罗, 贺高红, 焉晓明, 阮雪华. 潜伏型环氧固化剂甲基异丁基酮二亚胺的合成及工艺优化[J]. 化工学报, 2021, 72(7): 3832-3838.
[5] 张志华, 杜威, 段学志, 周兴贵. 表面改性未焙烧TS-1固载金催化丙烯氢氧环氧化反应性能研究[J]. 化工学报, 2021, 72(7): 3613-3625.
[6] 刘嘉玮, 郝雨峰, 苏延磊. 石墨烯量子点纳滤膜的仿生修饰及稳定性研究[J]. 化工学报, 2021, 72(6): 3390-3398.
[7] 魏小兰, 谢佩, 王维龙, 陆建峰, 丁静. 含钙三元氯化物体系相图计算与熔盐热稳定性[J]. 化工学报, 2021, 72(6): 3074-3083.
[8] 高剑晨, 赵炳晨, 何峰, 李廷贤. 六水硝酸镁相变储热复合材料改性制备及储/放热性能研究[J]. 化工学报, 2021, 72(6): 3328-3337.
[9] 吴月琼, 周魁斌, 黄梦源, 周梦雅. 储罐壁面限制条件下喷射火火焰行为[J]. 化工学报, 2021, 72(5): 2896-2904.
[10] 程文静, 余林, 程高, 钟远红, 郑成, 毛桃嫣. 多羟基Bola有机硅季铵盐的合成、表征及其应用性能[J]. 化工学报, 2021, 72(5): 2837-2848.
[11] 忻睦迪, 邢恩会. 三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究[J]. 化工学报, 2021, 72(5): 2657-2668.
[12] 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772.
[13] 张锐, 邵琦, 张华宇, 金泽龙, 张小亮. 硼掺杂二氧化硅杂化膜的制备及渗透汽化脱盐性能[J]. 化工学报, 2021, 72(4): 2317-2327.
[14] 邢美波, 魏玉瑶, 王瑞祥. ZnO/PbS异质结量子点太阳能电池的界面修饰及稳定性研究[J]. 化工学报, 2021, 72(3): 1684-1691.
[15] 雷然, 王嘉柔, 赵颂, 王志. 超疏水、自清洁氟化石墨改性不锈钢网的油水分离研究[J]. 化工学报, 2021, 72(2): 1191-1201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邱宪波, 袁景淇, 汪志锋. 用于基因扩增热循环温度跟踪的前馈变结构PID控制技术[J]. CIESC Journal, 2006, 14(2): 200 -206 .
[2] 杨庆峰. 反渗透系统中Zn2+对CaCO3结垢的阻滞[J]. CIESC Journal, 2006, 14(2): 178 -183 .
[3] 张强, 李少远. 基于统计分析的多变量预测控制性能检测与诊断
[J]. CIESC Journal, 2006, 14(2): 207 -215 .
[4] 刘志祥, 毛宗强, 徐景明, Natascha Hess-Mohr, Volkmar M.Schmidt. 用于PEMFC的丙烷自热重整制氢操作条件优化研究
[J]. CIESC Journal, 2006, 14(2): 259 -265 .
[5] 武占省, 李春, 孙喜房, 徐小琳, 代斌, 李金娥, 赵宏生. 新疆夏子街膨润土的特性及其酸活化产品脱色性能的研究[J]. CIESC Journal, 2006, 14(2): 253 -258 .
[6] AhmetSari,KamilKaygusuz. 应用于低温加热的肉豆蔻酸和硬脂酸共熔混合物的储热特性[J]. CIESC Journal, 2006, 14(2): 270 -275 .
[7] 纪红兵, 李俊丽, 裴丽霞, 高建荣. Low Breakage and Size-controlled Preparation of NiCl2 Immobilized Hollow Polyurea Microcapsules[J]. CIESC Journal, 2008, 16(1): 119 -123 .
[8] 邓志毅, 韦朝海, 周秀峰. Start-up and Performance of a Novel Reactor——Jet Biogas In-ter-loop Anaerobic Fluidized Bed[J]. CIESC Journal, 2008, 16(1): 143 -150 .
[9] 苗晶, 李玲玲, 陈国华, 高从堦, 董声雄. Preparation of N,O-carboxymethyl Chitosan Composite Nanofiltration Membrane and Its Rejection Performance for the Fermentation Effluent from a Wine Factory[J]. CIESC Journal, 2008, 16(2): 209 -213 .
[10] 郭红霞, 陈红萍, 梁英华, 芮玉兰, 吕敬德, 付占达. Direct Synthesis of Diphenyl Carbonate with Heterogeneous Catalyst and Optimal Synthesis Conditions of the Support Prepared by Sol-gel Method[J]. CIESC Journal, 2008, 16(2): 223 -227 .