化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 257-265.doi: 10.11949/0438-1157.20201554

• 流体力学与传递现象 • 上一篇    下一篇

水平管内冷凝流动的稳定性

赵文一1(),匡以武1,王文1(),张红星2,苗建印2   

  1. 1.上海交通大学机械与动力工程学院,上海 200240
    2.空间热控技术北京市重点实验室,北京 100190
  • 收稿日期:2020-11-02 修回日期:2021-01-15 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 王文 E-mail:yiyiyi@sjtu.edu.cn;wenwang@sjtu.edu.cn
  • 作者简介:赵文一(1996—),女,硕士研究生,yiyiyi@sjtu.edu.cn
  • 基金资助:
    国家自然科学青年基金项目(51906148)

Stability of condensing flow in a horizontal tube

ZHAO Wenyi1(),KUANG Yiwu1,WANG Wen1(),ZHANG Hongxing2,MIAO Jianyin2   

  1. 1.School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Beijing Key Laboratory of Space Thermal Control Technology, Beijing 100190, China
  • Received:2020-11-02 Revised:2021-01-15 Published:2021-06-20 Online:2021-06-20
  • Contact: WANG Wen E-mail:yiyiyi@sjtu.edu.cn;wenwang@sjtu.edu.cn

摘要:

管内冷凝换热流动在紧凑型两相热控系统中比较常见,本文关注于冷凝两相流中的不稳定性。首先对工质在冷凝器中的热力学过程进行建模,然后利用Lyapunov稳定性理论讨论了冷凝流动过程中流动压降发生振荡的机理。发现失稳区间的质量流量开始点对应的出口工质干度为1,而失稳区间的结束点对应的工质出口干度通常在0.8左右。在大入口过热度、小管径以及低热通量下,冷凝器的压降-流量曲线会出现负斜率,工作流体若进入负斜率区域,会导致压力振荡,使得系统的运行变得不稳定。

关键词: 凝结, 建模, 两相流, 压力振荡, 不稳定性

Abstract:

The condensing flow widely appeared in compact thermal management system. Thus, this work modelled and discussed the pressure drop oscillation of working fluids to reveal the flow instability of condenser. The mechanism of pressure drop oscillation of condensing flow was analyzed based on Lyapunov instability principle. The flow drift would occur and trigger the flow instability in the condenser channel, when the working fluid operates on the negative slope region of pressure-drop flow curve. The results indicated that the onset-instability of condensing flow with the outlet quality by 1, and flow instability would be ended for the outlet quality of working fluid with the quality of 0.8. In addition, the much higher inlet super, smaller pipe diameter and lower heat flux would be easier to generate the negative slope on the pressure-drop flow curve of the condenser. As a result, the pressure drop oscillation and the unstable operation would be occurred in the condensing flow system.

Key words: condensation, modeling, two-phase flow, pressure oscillation, instability

中图分类号: 

  • TK 124

图1

水平管内流动冷凝各部分压降-流量曲线"

图2

模型预测与试验结果"

图3

压降与流量的水动力学曲线"

图4

过热度对压降的影响"

图5

管径对压降的影响"

图6

热通量对压降的影响"

图7

饱和温度对压降的影响"

图8

饱和温度对两相压降梯度的影响"

1 Mudawar I. Assessment of high-heat-flux thermal management schemes [J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 122-141.
2 Lee H, Mudawar I, Hasan M M. Experimental and theoretical investigation of annular flow condensation in microgravity [J]. International Journal of Heat and Mass Transfer, 2013, 61: 293-309.
3 Anderson T M, Mudawar I. Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid [J]. Journal of Heat Transfer, 1989, 111(3): 752-759.
4 Willingham T C, Mudawar I. Forced-convection boiling and critical heat flux from a linear array of discrete heat sources [J]. International Journal of Heat and Mass Transfer, 1992, 35(11): 2879-2890.
5 Kuang Y W, Wang W, Miao J Y, et al. Flow boiling of ammonia and flow instabilities in mini-channels [J]. Applied Thermal Engineering, 2017, 113: 831-842.
6 Monde M. Critical heat flux in saturated forced convective boiling on a heated disk with an impinging jet [J]. Wärme - und Stoffübertragung, 1985, 19(3): 205-209.
7 Wadsworth D C, Mudawar I. Enhancement of single-phase heat transfer and critical heat flux from an ultra-high-flux simulated microelectronic heat source to a rectangular impinging jet of dielectric liquid [J]. Journal of Heat Transfer, 1992, 114(3): 764-768.
8 Rybicki J R, Mudawar I. Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays [J]. International Journal of Heat and Mass Transfer, 2006, 49(1/2): 5-16.
9 Lin L C, Ponnappan R. Heat transfer characteristics of spray cooling in a closed loop [J]. International Journal of Heat and Mass Transfer, 2003, 46(20): 3737-3746.
10 Kuang Y W, Wang W, Zhuan R, et al. Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux [J]. Annals of Nuclear Energy, 2015, 75: 158-167.
11 Chen M M. An analytical study of laminar film condensation (Ⅱ): Single and multiple horizontal tubes [J]. Journal of Heat Transfer, 1961, 83(1): 55-60.
12 Roques J F, Dupont V, Thome J R. Falling film transitions on plain and enhanced tubes [J]. Journal of Heat Transfer, 2002, 124(3): 491-499.
13 Soliman M, Schuster J R, Berenson P J. A general heat transfer correlation for annular flow condensation [J]. Journal of Heat Transfer, 1968, 90(2): 267-274.
14 Dobson M K, Chato J C. Condensation in smooth horizontal tubes [J]. Journal of Heat Transfer, 1998, 120(1): 193-213.
15 Quan X J, Cheng P, Wu H Y. Transition from annular flow to plug/slug flow in condensation of steam in microchannels [J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 707-716.
16 Kim S M, Kim J, Mudawar I. Flow condensation in parallel micro-channels (I): Experimental results and assessment of pressure drop correlations [J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 971-983.
17 Brown W F, Westendorf W H. Stability of intermixing of high-velocity vapor with its subcooled liquid cocurrent streams [R]. Ohio: NASA, 1966.
18 Soliman M, Berenson P J. Flow stability and gravitational effects in condenser tubes [C]// Proceeding of International Heat Transfer Conference 4.Paris-Versailles, France, Connecticut: Begellhouse, 1970.
19 Rabas T J, Minard P G. Two types of flow instabilities occurring inside horizontal tubes with complete condensation [J]. Heat Transfer Engineering, 1987, 8(1): 40-49.
20 Teng H, Cheng P, Zhao T S. Instability of condensate film and capillary blocking in small-diameter-thermosyphon condensers [J]. International Journal of Heat and Mass Transfer, 1999, 42(16): 3071-3083.
21 Bhatt B L, Wedekind G L. A self-sustained oscillatory flow phenomenon in two-phase condensing flow systems [J]. Journal of Heat Transfer, 1980, 102(4): 694-700.
22 Boyer B D, Robinson G E, Hughes T G. Experimental investigation of flow regimes and oscillatory phenomena of condensing steam in a single vertical annular passage [J]. International Journal of Multiphase Flow, 1995, 21(1): 61-74.
23 Bhatt B L, Wedekind G L, Jung K. Effects of two-phase pressure drop on the self-sustained oscillatory instability in condensing flows [J]. Journal of Heat Transfer, 1989, 111(2): 538-545.
24 Kobus C J, Wedekind G L, Bhatt B L. Predicting the onset of a low-frequency, limit-cycle type of oscillatory flow instability in multitube condensing flow systems [J]. Journal of Heat Transfer, 2001, 123(2): 319-330.
25 McAdams W H, Wood W K, Bryan R L. Vaporization inside horizontal tubes (Ⅱ): Benzene-oil mixtures [J]. Trans. ASME, 1942, 64(3): 193-200.
26 Lockhart R W, Martinelli R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes [J]. Chemical Engineering Progress1949, 45(1): 39-48.
27 Kim S M, Mudawar I. Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling [J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 718-734.
28 Friedel L. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow [C]// Proc. of European Two-Phase Flow Group Meet. Ispra, Italy, 1979: 485-491.
29 Zivi S M. Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production [J]. Journal of Heat Transfer, 1964, 86(2): 247-251.
30 Xiao J G, Hrnjak P. Pressure drop of R134a, R32 and R1233zd(E) in diabatic conditions during condensation from superheated vapor [J]. International Journal of Heat and Mass Transfer, 2018, 122: 442-450.
31 Ding W. Self-Excited Vibration [M]. Beijing: Tsinghua University Press, 2009: 99-199.
32 罗森诺. 传热学手册[M]. 北京: 科学出版社, 1985: 459-469.
Rohsenow W M. Handbook of Heat Transfer [M]. Beijing: Science Press, 1985: 459-469.
[1] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[2] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[3] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[4] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[5] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[6] 张经伟, 刘永阳, 刘东, 邵国栋, 李元鲁, 刘舫辰, 杜文静. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481.
[7] 燕子腾, 吴国明, 庄大伟, 丁国良, 曹法立, 孟建军. 用于微通道换热器的循环流道分流器的设计方法与应用效果[J]. 化工学报, 2021, 72(S1): 77-83.
[8] 王腾, 毕勤成, 桂淼, 刘朝晖. 弹状流液弹区含气率分布的试验研究[J]. 化工学报, 2021, 72(9): 4584-4593.
[9] 张海, 徐英, 张涛, 孙涔崴, 魏传顺, 戴志向. 丝网传感器的气液两相流可视化测量特性研究[J]. 化工学报, 2021, 72(9): 4573-4583.
[10] 赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628.
[11] 张文龙, 侯燕, 靳海波, 马磊, 何广湘, 杨索和, 郭晓燕, 张荣月. 加温加压下CFD-PBM耦合模型空气-水两相流数值模拟研究[J]. 化工学报, 2021, 72(9): 4594-4606.
[12] 林伟翔, 苏港川, 陈强, 文键, 王斯民. 基于超声技术的沉浸式换热器强化传热研究[J]. 化工学报, 2021, 72(8): 4055-4063.
[13] 梁旭鸣, 沈永超, 卫东, 郭倩, 高志. 基于直流内阻和交流阻抗特性的铝空气电池输出特性分析[J]. 化工学报, 2021, 72(8): 4361-4370.
[14] 赵雨萌, 王亦飞, 彭昕, 位宗瑶, 于广锁, 王辅臣. 洗涤冷却室垂直环隙空间内液相流动结构的研究[J]. 化工学报, 2021, 72(8): 4039-4046.
[15] 熊桂龙, 谢静雯, 杨林军. 粗糙度对水汽在细颗粒表面异质核化影响的数值模拟[J]. 化工学报, 2021, 72(8): 4304-4313.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙海翔, 张林, 柴红, 陈欢林. 壳聚糖亲和膜脱除蛋白质溶液中的内毒素[J]. CIESC Journal, 2005, 13(4): 457 -463 .
[2] 吴燕翔, 王碧玉. 恒压过滤介质阻力分析[J]. CIESC Journal, 2004, 12(1): 33 -36 .
[3] 郑裕国, 陈小龙, 汪钊, 沈寅初. 低高径比外循环气升式生物反应器带渣发酵生产有效霉素[J]. CIESC Journal, 2004, 12(1): 102 -107 .
[4] 李良智, 乔斌, 元英进. 氮源对利迪链菌素生产及相关次级代谢物分布的影响[J]. CIESC Journal, 2007, 15(3): 403 -410 .
[5] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[6] 孙国刚, 时铭显. 喷嘴进料对催化裂化提升管流动行为的影响[J]. CIESC Journal, 2003, 11(6): 638 -642 .
[7] 沈师孔, 李然家, 周吉萍, 余长春. 晶格氧用于轻烃的选择氧化[J]. CIESC Journal, 2003, 11(6): 649 -655 .
[8] 刘磊, 孙贺东, 胡志华, 周芳德. 水平管气液两相弹状流液弹频率的水动力学新模型[J]. CIESC Journal, 2003, 11(5): 508 -514 .
[9] 王靖岱, 阳永荣. 工业流化床乙烯共聚合生产过程中牌号切换的最优化研究[J]. CIESC Journal, 2003, 11(1): 1 -8 .
[10] 佟晓冬, 杨征, 董晓燕, 孙彦. 利用膨胀床吸附技术单步纯化分子伴侣—GroEL[J]. CIESC Journal, 2003, 11(4): 460 -463 .