化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 194-202.doi: 10.11949/0438-1157.20201560

• 流体力学与传递现象 • 上一篇    下一篇

电动汽车电池冷却器冷却液侧传热与流动性能仿真

山訸1(),马秋鸣1,潘权稳1(),曹伟亮2,王强2,王如竹1   

  1. 1.上海交通大学机械与动力工程学院,上海 200240
    2.上海欧菲滤清器有限公司,上海 201702
  • 收稿日期:2020-11-02 修回日期:2021-01-14 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 潘权稳 E-mail:shanheplus@sjtu.edu.cn;sailote@sjtu.edu.cn
  • 作者简介:山訸(1997—),男,硕士研究生,shanheplus@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金创新群体项目(51521004)

Simulation of heat transfer performance in the coolant side of a novel chiller for electric vehicles thermal management system

SHAN He1(),MA Qiuming1,PAN Quanwen1(),CAO Weiliang2,WANG Qiang2,WANG Ruzhu1   

  1. 1.School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Shanghai UFI Filter Co. Ltd. , Shanghai 201702, China
  • Received:2020-11-02 Revised:2021-01-14 Published:2021-06-20 Online:2021-06-20
  • Contact: PAN Quanwen E-mail:shanheplus@sjtu.edu.cn;sailote@sjtu.edu.cn

摘要:

针对双回路液冷电池热管理系统关键部件电池冷却器进行仿真研究,将提取出的冷却液侧流道作为研究对象,分析换热器中波纹板结构、冷却液质量流量与入口温度对于流道内流动及换热的影响。研究发现,波纹及上下板间的触点结构会在流道中产生的二次流,在低Reynolds数(Re=739)下即可达到湍流,增强了换热效果。拟合了板片Nusselt数与Reynolds数的关系式,发现板片的平均传热系数随着质量流量的提高而增加,增幅可达374%,但功耗也随之迅速增加,因而,需要合理选择质量流量以平衡传热与功耗。冷却液入口温度主要通过热物性影响传热系数及压降,但整体影响幅度较小,因而在实际使用中可不考虑季节与运行因素对电池冷却器性能的影响。

关键词: 电动汽车热管理, 电池冷却器, 数值模拟, 传热, 压降, 计算流体力学

Abstract:

A simulation study was carried out for the chiller, which is a key component of the secondary loop liquid battery cooling system. The coolant side flow channel was taken as the research object to analyze the influences of corrugated plate structure, coolant mass flow rate and inlet temperature on the flow and heat transfer characteristics. It is found that the second flow generated by the ripple and the contact structure between the upper and lower plates will enhance the turbulence and weaken the thickness of the boundary layer, thus enhancing the heat transfer effect, even when Reynolds number is as low as 739. And, the fitting equation between Nusselt number and Reynolds number showed that average heat transfer coefficient (HTC) of the plate increases with mass flow rate, but this will inevitably enlarge the pressure drop, so it need balance the heat transfer effect and power consumption. In addition, the variation of inlet temperature, which leads to the change of coolant thermal physical properties, caused a slight effect on the HTC and pressure drop. Therefore, the effects of seasonal and operating condition on the heat transfer performance need not consider.

Key words: thermal management of electric vehicles, chiller, numerical analysis, heat transfer, pressure drop, computational fluid dynamics

中图分类号: 

  • TK 172

图1

双回路液冷电池热管理系统"

图2

电池冷却器整体结构外形"

图3

网格横截面"

表1

网格无关性检验"

算例网格数量/个

相对平均误差

(对比网格3)

网格113811760.063%
网格220058610.041%
网格34464794

表2

冷却液(50%乙二醇-50%水)物性"

温度/K密度/(kg/m3)比热容/(J/(kg·K))热导率/(W/(m·K))黏度/(kg/(m·s))
273.151081.132030.3640.00808
278.151079.34632230.3680.00664
283.151077.47232420.3720.00551
288.151075.47832620.3760.00463
293.151073.36432810.380.00393
298.151071.1333010.3840.00338
303.151068.77633200.3870.00293
308.151066.30233400.3910.00257
313.151063.70833590.3940.00226

图4

试验与仿真换热量对比"

图5

流道不同高度位置横截面上速度云图"

图6

对称位置横截面上部分区域流线"

图7

对称位置横截面上温度云图"

图8

两板接触点附近的温度和流速云图"

图9

平均传热系数及压降随质量流量的变化"

图10

平均传热系数及压降随入口温度的变化"

1 Yu L, Li Y P. A flexible-possibilistic stochastic programming method for planning municipal-scale energy system through introducing renewable energies and electric vehicles [J]. Journal of Cleaner Production, 2019, 207: 772-787.
2 Teixeira A C R, Sodré J R. Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions [J]. Transportation Research Part D: Transport and Environment, 2018, 59: 375-384.
3 Wang Q, Jiang B, Li B, et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles [J]. Renewable and Sustainable Energy Reviews, 2016, 64: 106-128.
4 Liu T, Hu X S, Li S E, et al. Reinforcement learning optimized look-ahead energy management of a parallel hybrid electric vehicle [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1497-1507.
5 Zhang L, Hu X S, Wang Z P, et al. Multiobjective optimal sizing of hybrid energy storage system for electric vehicles [J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1027-1035.
6 万莹. 中国汽车报: 2018年全球电动汽车销量突破200万辆[EB/OL]. , 2019-02-20.
Wan Y. China Automotive News: Global sales of electric vehicles topped2 million in 2018. [EB/OL]. , 2019-02-20.
7 Hu X S, Zou C F, Zhang C P, et al. Technological developments in batteries: a survey of principal roles, types, and management needs [J]. IEEE Power and Energy Magazine, 2017, 15(5): 20-31.
8 Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy & Environmental Science, 2011, 4(9): 3243.
9 Liu H Q, Wei Z B, He W D, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review [J]. Energy Conversion and Management, 2017, 150: 304-330.
10 Wu W X, Wang S F, Wu W, et al. A critical review of battery thermal performance and liquid based battery thermal management [J]. Energy Conversion and Management, 2019, 182: 262-281.
11 Saw L H, Ye Y H, Tay A A O. Electrochemical-thermal analysis of 18650 lithium iron phosphate cell [J]. Energy Conversion and Management, 2013, 75: 162-174.
12 Ramadass P, Haran B L, White R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures (I): Cycling performance [J]. Journal of Power Sources, 2002, 112(2): 606-613.
13 聂磊, 王敏弛, 赵耀, 等. 纯电动汽车冷媒直冷电池热管理系统的试验研究[J]. 制冷学报, 2020, 41(4): 52-58.
Nie L, Wang M C, Zhao Y, et al. Experimental study on direct refrigerant battery cooling system for electric vehicle [J]. Journal of Refrigeration, 2020, 41(4): 52-58.
14 Zhu Y Y, Xie J, Pei A, et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries [J]. Nature Communications, 2019, 10: 2067.
15 Xu X M, He R. Research on the heat dissipation performance of battery pack based on forced air cooling [J]. Journal of Power Sources, 2013, 240: 33-41.
16 Chen K, Wang S F, Song M X, et al. Structure optimization of parallel air-cooled battery thermal management system [J]. International Journal of Heat and Mass Transfer, 2017, 111: 943-952.
17 Zhou H B, Zhou F, Xu L P, et al. Thermal performance of cylindrical lithium-ion battery thermal management system based on air distribution pipe [J]. International Journal of Heat and Mass Transfer, 2019, 131: 984-998.
18 Feng X N, Ouyang M G, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review [J]. Energy Storage Materials, 2018, 10: 246-267.
19 Zhou H B, Zhou F, Zhang Q, et al. Thermal management of cylindrical lithium-ion battery based on a liquid cooling method with half-helical duct [J]. Applied Thermal Engineering, 2019, 162: 114257.
20 Tian Z, Gan W, Zhang X L, et al. Investigation on an integrated thermal management system with battery cooling and motor waste heat recovery for electric vehicle [J]. Applied Thermal Engineering, 2018, 136: 16-27.
21 Malik M, Dincer I, Rosen M A, et al. Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling [J]. Applied Thermal Engineering, 2018, 129: 472-481.
22 Kritzer P, Döring H, Emermacher B. Improved safety for automotive lithium batteries: an innovative approach to include an emergency cooling element [J]. Advances in Chemical Engineering and Science, 2014, 4(2): 197-207.
23 Wang W J, Zhang X, Xin C Y, et al. An experimental study on thermal management of lithium ion battery packs using an improved passive method [J]. Applied Thermal Engineering, 2018, 134: 163-170.
24 Rao Z H, Wang S F, Zhang G Q. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery [J]. Energy Conversion and Management, 2011, 52(12): 3408-3414.
25 Weng J W, Ouyang D X, Yang X Q, et al. Optimization of the internal fin in a phase-change-material module for battery thermal management [J]. Applied Thermal Engineering, 2020, 167: 114698.
26 Xu J X, Chao J W, Li T X, et al. Near-zero-energy smart battery thermal management enabled by sorption energy harvesting from air [J]. ACS Central Science, 2020, 6(9): 1542-1554.
27 Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles [J]. Applied Thermal Engineering, 2019, 149: 192-212.
28 黄蔚. 电动汽车电池冷却器仿真研究[D]. 贵阳: 贵州大学, 2019.
Huang W. Simulation research on battery chiller for electric vehicle [D]. Guiyang: Guizhou University, 2019.
29 Focke W W, Zachariades J, Olivier I. The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers [J]. International Journal of Heat and Mass Transfer, 1985, 28(8): 1469-1479.
30 魏文建, 李华. 点波板式换热器内流体流动换热及压降特性的试验研究[J]. 制冷技术, 2012, 32(4): 36-41.
Wei W J, Li H. Experimental investigation of heat transfer and pressure drop characteristics of fluid flow in dimple plate heat exchanger [J]. Chinese Journal of Refrigeration Technology, 2012, 32(4): 36-41.
31 张春秋, 罗玉林. 电动汽车电池冷却系统对空调系统性能的影响[J]. 制冷与空调, 2020, 20(2): 49-52, 72.
Zhang C Q, Luo Y L. Effect of battery cooling system on performance of air-conditioning system for electric vehicle [J]. Refrigeration and Air-Conditioning, 2020, 20(2): 49-52, 72.
32 崔立祺. 基于FLUENT的板式换热器三维数值模拟[D]. 杭州: 浙江大学, 2008.
Cui L Q. Theoretical 3D numerical simulation of plate heat exchanger based on FLUENT [D]. Hangzhou: Zhejiang University, 2008.
33 张如许, 魏文建, 胡海涛, 等. 单相流体在点波板式换热器内流动与换热的数值模拟[J]. 制冷技术, 2014, 34(5): 6-12.
Zhang R X, Wei W J, Hu H T, et al. Numerical simulation of single-phase flow and heat transfer in dimple plate heat exchanger [J]. Chinese Journal of Refrigeration Technology, 2014, 34(5): 6-12.
34 徐志明, 郭进生, 郭军生, 等. 板式换热器传热和阻力特性的试验研究[J]. 热科学与技术, 2010, 9(1): 11-16.
Xu Z M, Guo J S, Guo J S, et al. Experimental study on pressure drop and heat transfer characteristics of plate heat exchanger [J]. Journal of Thermal Science and Technology, 2010, 9(1): 11-16.
35 徐志明, 王月明, 张仲彬. 板式换热器性能的数值模拟[J]. 动力工程学报, 2011, 31(3): 198-202.
Xu Z M, Wang Y M, Zhang Z B. Numerical simulation on performance of plate heat exchangers [J]. Journal of Chinese Society of Power Engineering, 2011, 31(3): 198-202.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[3] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[4] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[5] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[6] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[7] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[8] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[9] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[10] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[11] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[12] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[13] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[14] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
[15] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤艳峰,张淑芬,杨锦宗. 在NaOH-烯丙基氯-DMSO体系中合成烯丙基蔗糖的新方法[J]. CIESC Journal, 2005, 13(6): 835 -836 .
[2] 孙贺东, 刘磊, 周芳德, 高承泰. 多层合采油藏最大有效井径数学模型及精确解[J]. CIESC Journal, 2003, 11(5): 550 -554 .
[3] 李英, 都健, 姚平经. 多杂质水网络设计和零排放[J]. CIESC Journal, 2003, 11(5): 559 -564 .
[4] 闻建平, 王长林, 乔萍. 2-氯-5-氯甲基吡啶在气升环流反应器中的合成研究[J]. CIESC Journal, 2003, 11(5): 608 -610 .
[5] 赵伟荣, 史惠祥, 汪大翚. 臭氧氧化阳离子红染料的动力学研究[J]. CIESC Journal, 2003, 11(4): 388 -394 .
[6] 徐冬梅, 胡仰栋, 华贲, 王修林. 含再生再利用的用水系统的最小新鲜水和相应的再生水用量的确定[J]. CIESC Journal, 2003, 11(3): 257 -263 .
[7] 刘润静, 陈建峰, 郭奋, 吉米, 沈志刚. 纳米碳酸钙在非等温条件下热分解动力学及机理研究[J]. CIESC Journal, 2003, 11(3): 302 -306 .
[8] 高正明, 施力田. 搅拌槽内温度对气含率的影响[J]. CIESC Journal, 2003, 11(2): 204 -207 .
[9] 李伟, 朱自强. 黄芩甙在EOPO/盐双水相系统中的分配系数测定及关联[J]. CIESC Journal, 2002, 10(6): 666 -669 .
[10] 成弘, 周明. 上升气泡附近液体速度分布的预测[J]. CIESC Journal, 2002, 10(5): 545 -549 .