化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 203-209.DOI: 10.11949/0438-1157.20201537
收稿日期:
2020-11-01
修回日期:
2021-01-18
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
胡海涛
作者简介:
谢瑶(1996—),男,硕士研究生,基金资助:
XIE Yao(),LI Jianrui,HU Haitao(
)
Received:
2020-11-01
Revised:
2021-01-18
Online:
2021-06-20
Published:
2021-06-20
Contact:
HU Haitao
摘要:
印刷电路板式换热器(printed circuit heat exchanger,PCHE)作为一种新型高效微通道换热器,将其应用在LNG浮式储存与气化装置(FSRU)上具有非常大的潜力。对超临界甲烷在PCHE通道中的流动和传热特性进行了数值模拟,结果表明:传热系数随温度先增大后减小,并在准临界温度(202~212 K)处达到峰值;压降随温度先保持不变,然后在准临界温度附近急剧上升,之后随温度增大的趋势变缓;当温度在准临界温度附近时,低质流密度下增大热通量会恶化传热;不同压力下传热系数均在准临界温度处达到峰值;温度低于准临界温度时,压力对压降的影响可以忽略,温度高于准临界温度时,压降随压力增大而显著降低;压力由6.4M Pa提高到8.5 MPa时,传热最大降低32.5%,压降最大降低28.5%;开发的换热和压降关联式平均误差分别为5.6%和4.2%。
中图分类号:
谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
XIE Yao, LI Jianrui, HU Haitao. Simulation of supercritical methane flow and heat transfer characteristics in printed circuit heat exchanger[J]. CIESC Journal, 2021, 72(S1): 203-209.
1 | 李仲珍, 郭少龙, 陶文铨. 超临界LNG管内流动与换热特性研究[J]. 工程热物理学报, 2013, 34(12): 2314-2317. |
Li Z Z, Guo S L, Tao W Q. Studies of supercritical convective heat transfer of LNG in tube [J]. Journal of Engineering Thermophysics, 2013, 34(12): 2314-2317. | |
2 | 王博杰, 匡以武, 齐超, 等. 中间介质气化器中超临界LNG换热过程分析[J]. 化工学报, 2015, 66(S2): 220-225. |
Wang B J, Kuang Y W, Qi C, et al. Analysis of heat transfer to supercritical LNG in intermediate fluid vaporizer [J]. CIESC Journal, 2015, 66(S2): 220-225. | |
3 | Duffey R B, Pioro I L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey) [J]. Nuclear Engineering and Design, 2005, 235(8): 913-924. |
4 | Cheng L X, Ribatski G, Thome J R. Analysis of supercritical CO2 cooling in macro- and micro-channels [J]. International Journal of Refrigeration, 2008, 31(8): 1301-1316. |
5 | Ehsan M M, Guan Z Q, Klimenko A Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications [J]. Renewable and Sustainable Energy Reviews, 2018, 92: 658-675. |
6 | Chu W X, Li X H, Ma T, et al. Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels [J]. International Journal of Heat and Mass Transfer, 2017, 113: 184-194. |
7 | Ishizuk T. Thermal-hydraulic characteristics of a printed circuit heat exchanger in a supercritical CO2 loop[C]// 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulic. London, England, 2018. |
8 | Yoon S H, Kim J H, Hwang Y W, et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region [J]. International Journal of Refrigeration, 2003, 26(8): 857-864. |
9 | Liu S H, Huang Y P, Liu G X, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes [J]. International Journal of Heat and Mass Transfer, 2017, 106: 1144-1156. |
10 | Zhang Q, Li H X, Kong X F, et al. Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux [J]. International Journal of Heat and Mass Transfer, 2018, 122: 469-482. |
11 | Zhang Y D, Peng M J, Xia G L, et al. Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube [J]. Applied Thermal Engineering, 2019, 154: 380-392. |
12 | Bovard S, Abdi M, Nikou M R K, et al. Numerical investigation of heat transfer in supercritical CO2 and water turbulent flow in circular tubes [J]. The Journal of Supercritical Fluids, 2017, 119: 88-103. |
13 | Du Z X, Lin W S, Gu A Z. Numerical investigation of cooling heat transfer to supercritical CO2 in a horizontal circular tube [J]. The Journal of Supercritical Fluids, 2010, 55(1): 116-121. |
14 | Gu H F, Li H Z, Wang H J, et al. Experimental investigation on convective heat transfer from a horizontal miniature tube to methane at supercritical pressures [J]. Applied Thermal Engineering, 2013, 58(1/2): 490-498. |
15 | 杜忠选, 林文胜, 顾安忠, 等. 竖直圆管内超临界甲烷冷却换热数值模拟[J]. 化工学报, 2009, 60(S1): 63-67. |
Du Z X, Lin W S, Gu A Z, et al. Numerical simulation of cooling heat transfer to supercritical methane in vertical circular tube [J]. CIESC Journal, 2009, 60(S1): 63-67. | |
16 | 王亚洲, 华益新, 孟华. 超临界压力下低温甲烷的湍流传热数值研究[J]. 推进技术, 2010, 31(5): 606-611, 622. |
Wang Y Z, Hua Y X, Meng H. Numerical investigation of turbulent heat transfer of cryogenic-propellant methane under supercritical pressures [J]. Journal of Propulsion Technology, 2010, 31(5): 606-611, 622. | |
17 | Ely J F, Hanley H J M. Prediction of transport properties (I): Viscosity of fluids and mixtures [J]. Industrial & Engineering Chemistry Fundamentals, 1981, 20(4): 323-332. |
18 | Meng H, Yang V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme [J]. Journal of Computational Physics, 2003, 189(1): 277-304. |
19 | Ely J F, Hanley H J M. Prediction of transport properties (Ⅱ): Thermal conductivity of pure fluids and mixtures [J]. Industrial & Engineering Chemistry Fundamentals, 1983, 22(1): 90-97. |
20 | Kwon J G, Kim T H, Park H S, et al. Optimization of airfoil-type PCHE for the recuperator of small scale Brayton cycle by cost-based objective function [J]. Nuclear Engineering and Design, 2016, 298: 192-200. |
21 | Han C L, Ren J J, Dong W P, et al. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube [J]. Cryogenics, 2016, 78: 1-13. |
22 | Xu X Y, Ma T, Li L, et al. Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle [J]. Applied Thermal Engineering, 2014, 70(1): 867-875. |
23 | Zhao Z C, Zhang X, Zhao K, et al. Numerical investigation on heat transfer and flow characteristics of supercritical nitrogen in a straight channel of printed circuit heat exchanger [J]. Applied Thermal Engineering, 2017, 126: 717-729. |
24 | Li H Z, Kruizenga A, Anderson M, et al. Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures [J]. International Journal of Thermal Sciences, 2011, 50(12): 2430-2442. |
25 | Jackson J D. Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors [C]// The 13th Pacific Basin Nuclear Conference. 2002. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[9] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[10] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[11] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[12] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[13] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 716
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 405
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||