化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 482-493.doi: 10.11949/0438-1157.20201771

• 能源和环境工程 • 上一篇    下一篇

镍基非对称中空纤维膜用于乙醇自热重整制氢

陈晨(),王明明,王志刚(),谭小耀()   

  1. 天津工业大学化学与化工学院,天津 300387
  • 收稿日期:2020-12-09 修回日期:2021-01-15 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 王志刚,谭小耀 E-mail:LuckyChency@163.com;wangzhigang@tiangong.edu.cn;tanxiaoyao@tiangong.edu.cn
  • 作者简介:陈晨(1995—),女,硕士研究生,LuckyChency@163.com
  • 基金资助:
    国家自然科学基金项目(91745116);天津市自然科学基金项目(17JCZDJC36900)

Hydrogen production by ethanol autothermal reforming using nickel-based asymmetric hollow fiber membranes

CHEN Chen(),WANG Mingming,WANG Zhigang(),TAN Xiaoyao()   

  1. Department of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
  • Received:2020-12-09 Revised:2021-01-15 Published:2021-06-20 Online:2021-06-20
  • Contact: WANG Zhigang,TAN Xiaoyao E-mail:LuckyChency@163.com;wangzhigang@tiangong.edu.cn;tanxiaoyao@tiangong.edu.cn

摘要:

采用纺丝-烧结技术制备了具有内表面致密皮层的外支撑式金属镍非对称中空纤维膜,并用于乙醇自热重整(EATR)制氢,研究了温度、进料流速、吹扫气流速、水醇比(S/C)以及氧醇比(O2/C)等操作条件对膜制氢性能的影响。结果表明,金属镍非对称中空纤维膜既具有优异的EATR催化活性,又有良好的透氢性能。在500~1000℃、S/C=4、O2/C=0.8的条件下乙醇可完全转化,H2产率和H2渗透通量可分别达到81.59%和13.99 mmol/(m2·s),增加进料中氧气含量可显著抑制膜表面积炭,但同时也会降低氢气产率和一氧化碳选择性。

关键词: 乙醇自热重整, 制氢, 膜, 中空纤维, 催化

Abstract:

Metallic nickel asymmetric hollow fiber membranes with an inner dense skin on the outer porous layer were fabricated by spinning-phase inversion technique. The membrane was used to produce hydrogen via autothermal reforming of ethanol. The operating conditions including temperature, feeding flow rate, sweeping rate, steam-to-carbon molar ratio (S/C) and oxygen-to-carbon ratio (O2/C) were investigated and optimized. The results have shown that the asymmetric nickel hollow fibers have excellent catalytic activity to EATR and high hydrogen permeation performance as well. Operated at 500—1000℃ with a steam-to-carbon ratio of 4 and an oxygen-to-carbon molar ratio of 0.8, the ethanol was completely consumed with 81.59% hydrogen yield, and the hydrogen permeation rate reached up to 13.99 mmol/(m2·s). With the increase of oxygen concentration in feed, the carbon deposition on the membrane surface was remarkably inhibited, while the hydrogen yield and CO selectivity were decreased.

Key words: ethanol autothermal reforming, hydrogen production, membrane, hollow fiber, catalysis

中图分类号: 

  • TQ 317.4

图1

金属镍中空纤维膜乙醇自热重整试验装置"

图2

镍中空纤维膜的形貌(1—截面;2—膜壁;3—外表面;4—内表面)"

图3

不同进料浓度下镍中空纤维膜的H2渗透通量与温度的关系(H2-He进料速率= 30 ml/min;N2吹扫速率= 60 ml/min)"

图4

镍中空纤维膜反应器和空白反应器中乙醇自热重整反应乙醇转化率、H2产率,MR产物浓度和Blank产物浓度随温度的变化(反应条件:S/C=4,O2/C=0.8,无吹扫气,进料流速为13 μl/min)"

图5

不同吹扫气流速对乙醇自热重整反应乙醇转化率、H2产率、CO选择性和H2渗透通量的影响(反应条件:S/C=4,O2/C=0.8,吹扫气流速分别为0、30、50、70 ml/min,进料流速为13 μl/min)"

图6

不同蒸汽/乙醇比对乙醇自热重整反应乙醇转化率、H2产率、CO选择性和H2渗透通量的影响(反应条件:S/C=3、4、5、6,O2/C=0.8,吹扫气流速为30 ml/min,进料流速为13 μl/min)"

图7

不同氧气/乙醇比对乙醇自热重整反应乙醇转化率、H2产率、CO选择性和H2渗透通量的影响(反应条件:S/C=4,O2/C=0、0.5、0.8、1,吹扫气流速为30 ml/min,进料流速为13 μl/min)"

图8

不同进料流速对乙醇自热重整反应乙醇转化率、H2产率、CO选择性和H2渗透通量的影响(反应条件:S/C=4,O2/C=0.8,吹扫气流速为30 ml/min,进料流速分别为13、19、26、39 μl/min)"

图9

ESR、EATR氢气渗透测试前后镍中空纤维膜的XRD谱图"

图10

ESR、EATR氢气渗透测试后镍中空纤维膜的形貌(a)、(b),ESR、EATR氢气渗透测试前后镍中空纤维的EDS映射(c)和元素分析(d)"

1 Ni M, Leung D Y C, Leung M K H. A review on reforming bio-ethanol for hydrogen production [J]. International Journal of Hydrogen Energy, 2007, 32(15): 3238-3247.
2 Lin H Q, He Z J, Sun Z, et al. CO2-selective membranes for hydrogen production and CO2 capture (I): Membrane development [J]. Journal of Membrane Science, 2014, 457: 149-161.
3 Mazloomi K, Gomes C. Hydrogen as an energy carrier: prospects and challenges [J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3024-3033.
4 Spallina V, Matturro G, Ruocco C, et al. Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: experimental demonstration, reactor modelling and design [J]. Energy, 2018, 143: 666-681.
5 Conte M, Iacobazzi A, Ronchetti M, et al. Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives [J]. Journal of Power Sources, 2001, 100(1/2): 171-187.
6 Lin W H, Liu Y C, Chang H F. Hydrogen production from oxidative steam reforming of ethanol in a palladium-silver alloy composite membrane reactor [J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(5): 435-440.
7 Lin W H, Liu Y C, Chang H F. Autothermal reforming of ethanol in a Pd-Ag/Ni composite membrane reactor [J]. International Journal of Hydrogen Energy, 2010, 35(23): 12961-12969.
8 Weng S F, Wang Y H, Lee C S. Autothermal steam reforming of ethanol over La2Ce2-xRuxO7 (x = 0~0.35) catalyst for hydrogen production [J]. Applied Catalysis B: Environmental, 2013, 134/135: 359-366.
9 Iulianelli A, Palma V, Bagnato G, et al. From bioethanol exploitation to high grade hydrogen generation: steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor [J]. Renewable Energy, 2018, 119: 834-843.
10 Graschinsky C, Giunta P, Amadeo N, et al. Thermodynamic analysis of hydrogen production by autothermal reforming of ethanol [J]. International Journal of Hydrogen Energy, 2012, 37(13): 10118-10124.
11 Guil-López R, Navarro R M, Peña M A, et al. Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts [J]. International Journal of Hydrogen Energy, 2011, 36(2): 1512-1523.
12 Espinal R, Anzola A, Adrover E, et al. Durable ethanol steam reforming in a catalytic membrane reactor at moderate temperature over cobalt hydrotalcite [J]. International Journal of Hydrogen Energy, 2014, 39(21): 10902-10910.
13 Cheng Y S, Peña M A, Fierro J L, et al. Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from Towngas mixture [J]. Journal of Membrane Science, 2002, 204(1/2): 329-340.
14 Paiman S H, Rahman M A, Othman M H D, et al. Morphological study of yttria-stabilized zirconia hollow fibre membrane prepared using phase inversion/sintering technique [J]. Ceramics International, 2015, 41(10): 12543-12553.
15 Tan X Y, Liu Y T, Li K. Preparation of LSCF ceramic hollow-fiber membranes for oxygen production by a phase-inversion/sintering technique [J]. Industrial & Engineering Chemistry Research, 2005, 44(1): 61-66.
16 Lytkina A A, Orekhova N V, Ermilova M M, et al. Ru Rh based catalysts for hydrogen production via methanol steam reforming in conventional and membrane reactors [J]. International Journal of Hydrogen Energy, 2019, 44(26): 13310-13322.
17 Haag S, Burgard M, Ernst B. Pure nickel coating on a mesoporous alumina membrane: preparation by electroless plating and characterization [J]. Surface and Coatings Technology, 2006, 201(6): 2166-2173.
18 Zhang K, Gade S K, Way J D. Effects of heat treatment in air on hydrogen sorption over Pd-Ag and Pd-Au membrane surfaces [J]. Journal of Membrane Science, 2012, 403/404: 78-83.
19 Maneerung T, Hidajat K, Kawi S. Ultra-thin (<1 μm) internally-coated Pd-Ag alloy hollow fiber membrane with superior thermal stability and durability for high temperature H2 separation [J]. Journal of Membrane Science, 2014, 452: 127-142.
20 Wang M M, Zhou Y L, Tan X Y, et al. Nickel hollow fiber membranes for hydrogen separation from reformate gases and water gas shift reactions operated at high temperatures [J]. Journal of Membrane Science, 2019, 575: 89-97.
21 Ryi S K, Park J S, Choi S H, et al. Fabrication and characterization of metal porous membrane made of Ni powder for hydrogen separation [J]. Separation and Purification Technology, 2006, 47(3): 148-155.
22 Ernst B, Haag S, Burgard M. Permselectivity of a nickel/ceramic composite membrane at elevated temperatures: a new prospect in hydrogen separation? [J]. Journal of Membrane Science, 2007, 288(1/2): 208-217.
23 Lee S K, Ohn Y G, Noh S J. Measurement of hydrogen permeation through nickel in the elevated temperature range of 450 — 850℃ [J]. Journal of the Korean Physical Society, 2013, 63(10): 1955-1961.
24 Wang Z G, Kathiraser Y, Kawi S. High performance oxygen permeable membranes with Nb-doped BaBi0.05Co0.95O3-δ perovskite oxides [J]. Journal of Membrane Science, 2013, 431: 180-186.
25 Tan X Y, Liu Y T, Li K. Mixed conducting ceramic hollow-fiber membranes for air separation [J]. AIChE Journal, 2005, 51(7): 1991-2000.
26 Wang Z G, Kathiraser Y, Soh T, et al. Ultra-high oxygen permeable BaBiCoNb hollow fiber membranes and their stability under pure CH4 atmosphere [J]. Journal of Membrane Science, 2014, 465: 151-158.
27 Liu Y T, Li K. Preparation of SrCe0.95Yb0.05O3-α hollow fibre membranes: study on sintering processes [J]. Journal of Membrane Science, 2005, 259(1/2): 47-54.
28 Wang M M, Tan X Y, Wang X B, et al. Asymmetric nickel hollow fibres as the catalytic membrane reactor for CO2 hydrogenation into syngas [J]. Chemical Communications, 2019, 55(29): 4226-4229.
29 Cross A, Miller J T, Danghyan V, et al. Highly active and stable Ni-Cu supported catalysts prepared by combustion synthesis for hydrogen production from ethanol [J]. Applied Catalysis A: General, 2019, 572: 124-133.
30 Ogo S, Sekine Y. Recent progress in ethanol steam reforming using non-noble transition metal catalysts: a review [J]. Fuel Processing Technology, 2020, 199: 106238.
31 Jia H Y, Zhang J X, Yu J F, et al. Efficient H2 production via membrane-assisted ethanol steam reforming over Ir/CeO2 catalyst [J]. International Journal of Hydrogen Energy, 2019, 44(45): 24733-24745.
32 Jin Y, Rui Z B, Tian Y, et al. Autothermal reforming of ethanol in dense oxygen permeation membrane reactor [J]. Catalysis Today, 2016, 264: 214-220.
[1] 戴晓业, 安青松, 许云婷, 史琳. 废弃制冷剂降解方法研究现状及思考[J]. 化工学报, 2021, 72(S1): 1-6.
[2] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[3] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[4] 刘献飞, 王恒, 王方, 李志强, 朱彩霞, 张浩飞. 单螺杆膨胀机螺旋槽道内液膜分布均匀特性[J]. 化工学报, 2021, 72(S1): 336-341.
[5] 李腾飞, 缪赟, 杨柳, 王龙耀, 朱铧丞. 微波强化Y型分子筛离子交换技术[J]. 化工学报, 2021, 72(S1): 406-412.
[6] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[7] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[8] 徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444.
[9] 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795.
[10] 梁家豪, 张国强, 高源, 尹娇, 郑华艳, 李忠. 介孔构建对CuY甲醇氧化羰基化反应活性的影响[J]. 化工学报, 2021, 72(9): 4685-4697.
[11] 李泽严, 樊星, 李坚. 非热等离子体强化TiO2催化尿素分解副产物水解性能的研究[J]. 化工学报, 2021, 72(9): 4698-4707.
[12] 李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717.
[13] 方远鑫, 肖武, 姜晓滨, 李祥村, 贺高红, 吴雪梅. 膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟[J]. 化工学报, 2021, 72(9): 4740-4749.
[14] 耿晨旭, 孙玉绣, 黄宏亮, 郭翔宇, 乔志华, 仲崇立. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报, 2021, 72(9): 4750-4758.
[15] 张杰, 刘壮, 巨晓洁, 谢锐, 汪伟, 褚良银. 层状Mg/Al氢氧化物/聚乙烯醇复合膜的制备及染料截留性能的研究[J]. 化工学报, 2021, 72(9): 4941-4949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 叶树明, 蒋凯, 蒋春跃, 潘勤敏. 聚合物系动态超临界流体脱挥[J]. CIESC Journal, 2005, 13(6): 732 -735 .
[2] 唐晓津, 骆广生, 李洪波, 汪家鼎. 聚合-分散脉冲筛板萃取塔两相流动特性[J]. CIESC Journal, 2004, 12(1): 1 -6 .
[3] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[4] 张腾云, 罗京莉, K.Chuang, 钟理. 滴流床中乙醛液相氧化合成过氧乙酸新工艺[J]. CIESC Journal, 2007, 15(3): 320 -325 .
[5] 刘先桥, 官月平, 邢建民, 马志亚, 刘会洲. 带环氧基的超顺磁性高分子微球的制备及其性能表征[J]. CIESC Journal, 2003, 11(6): 731 -735 .
[6] 周立芳, 邵之江. 具有软硬约束的混合权系数最小二乘稳定预测控制算法[J]. CIESC Journal, 2003, 11(5): 565 -570 .
[7] 宋宝东, 丁辉, 吴金川, Hayashi Y., Talukder MMR, 王世昌. 表面活性剂包衣Candida rugosa脂肪酶在无溶剂下油水两相体系中催化橄榄油水解[J]. CIESC Journal, 2003, 11(5): 601 -603 .
[8] 罗坤, 郑友取, 樊建人, 岑可法. 三维混合层中大涡结构与扩散颗粒的相互作用[J]. CIESC Journal, 2003, 11(4): 377 -382 .
[9] 张旭, 杨燕华, 张成芳, 王军. MDEA与哌嗪、二乙醇胺混合溶液吸收二氧化碳速率研究[J]. CIESC Journal, 2003, 11(4): 408 -413 .
[10] 余淑娴, 余祖兵, 邱祖民, 孙(韦华) . 甲基二氯硅烷-甲基乙烯基二氯硅烷-甲苯三元体系等压汽液平衡[J]. CIESC Journal, 2003, 11(2): 213 -216 .