化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1523-1533.DOI: 10.11949/0438-1157.20211532
收稿日期:
2021-10-27
修回日期:
2022-02-22
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
唐桂华
作者简介:
黄志豪(1997—),男,硕士研究生,基金资助:
Zhihao HUANG1(),Guangxi LI2,Guihua TANG1(
),Xiaolong LI1,Yuanhong FAN1
Received:
2021-10-27
Revised:
2022-02-22
Online:
2022-04-05
Published:
2022-04-25
Contact:
Guihua TANG
摘要:
数值模拟了辅助冷却剂超临界水在单侧加热方形通道中的流动传热特性,从边界层厚度与近壁区湍动能两方面阐述传热恶化产生和恢复的机理。研究了不同工况(压力、入口温度、热通量、质量流量、流动方向和管径)下超临界流体常用传热关联式的适用性,发现Fan关联式预测精度较高。采用PEC因子对不同强化传热结构(双通道和凹槽)进行评价,发现上下双通道PEC因子普遍小于1,综合强化换热效果不佳,而偏下游的非对称倒角凹槽结构PEC因子为1.13~1.51,不同工况下均为最大值。场协同原理分析也证明偏下游的非对称倒角凹槽结构具有最佳的综合换热性能。
中图分类号:
黄志豪, 李光熙, 唐桂华, 李小龙, 范元鸿. 单侧加热方形通道内超临界水传热研究[J]. 化工学报, 2022, 73(4): 1523-1533.
Zhihao HUANG, Guangxi LI, Guihua TANG, Xiaolong LI, Yuanhong FAN. Numerical investigation on heat transfer of supercritical water in a side-heated square channel[J]. CIESC Journal, 2022, 73(4): 1523-1533.
Case | P/ MPa | G/ (kg·m-2·s-1) | qw/ (kW·m-2) | D/ mm | Tin/ K | 流向 |
---|---|---|---|---|---|---|
1 | 23 | 500 | 1000 | 8 | 573 | 向上 |
2 | 23 | 500 | 200 | 8 | 573 | 向上 |
3 | 25 | 500 | 1000 | 8 | 573 | 向上 |
4 | 28 | 500 | 1000 | 8 | 573 | 向上 |
5 | 23 | 500 | 1000 | 8 | 373 | 向上 |
6 | 23 | 500 | 1000 | 8 | 673 | 向上 |
7 | 23 | 200 | 1000 | 8 | 573 | 向上 |
8 | 23 | 1000 | 1000 | 8 | 573 | 向上 |
9 | 23 | 1500 | 1000 | 8 | 573 | 向上 |
10 | 23 | 500 | 1000 | 30 | 573 | 向上 |
11 | 23 | 500 | 1000 | 25 | 573 | 向上 |
12 | 23 | 500 | 1000 | 20 | 573 | 向上 |
13 | 23 | 500 | 1000 | 15 | 573 | 向上 |
14 | 23 | 500 | 1000 | 10 | 573 | 向上 |
15 | 23 | 500 | 1000 | 2 | 573 | 向上 |
16 | 23 | 500 | 1000 | 8 | 573 | 水平 |
17 | 23 | 500 | 1000 | 8 | 573 | 向下 |
表1 计算工况参数
Table 1 Conditions of numerical simulation
Case | P/ MPa | G/ (kg·m-2·s-1) | qw/ (kW·m-2) | D/ mm | Tin/ K | 流向 |
---|---|---|---|---|---|---|
1 | 23 | 500 | 1000 | 8 | 573 | 向上 |
2 | 23 | 500 | 200 | 8 | 573 | 向上 |
3 | 25 | 500 | 1000 | 8 | 573 | 向上 |
4 | 28 | 500 | 1000 | 8 | 573 | 向上 |
5 | 23 | 500 | 1000 | 8 | 373 | 向上 |
6 | 23 | 500 | 1000 | 8 | 673 | 向上 |
7 | 23 | 200 | 1000 | 8 | 573 | 向上 |
8 | 23 | 1000 | 1000 | 8 | 573 | 向上 |
9 | 23 | 1500 | 1000 | 8 | 573 | 向上 |
10 | 23 | 500 | 1000 | 30 | 573 | 向上 |
11 | 23 | 500 | 1000 | 25 | 573 | 向上 |
12 | 23 | 500 | 1000 | 20 | 573 | 向上 |
13 | 23 | 500 | 1000 | 15 | 573 | 向上 |
14 | 23 | 500 | 1000 | 10 | 573 | 向上 |
15 | 23 | 500 | 1000 | 2 | 573 | 向上 |
16 | 23 | 500 | 1000 | 8 | 573 | 水平 |
17 | 23 | 500 | 1000 | 8 | 573 | 向下 |
1 | 陈玮玮, 方贤德, 鹿世化, 等. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211. |
Chen W W, Fang X D, Lu S H, et al. Parameter design of aircraft fuel regeneration cooling thermal management system[J]. CIESC Journal, 2020, 71(S1): 204-211. | |
2 | Shang Z, Chen S. Numerical investigation of diameter effect on heat transfer of supercritical water flows in horizontal round tubes[J]. Applied Thermal Engineering, 2011, 31(4): 573-581. |
3 | 范辰浩, 王海军, 宋子琛, 等. 小管径超临界流体传热恶化特性研究[J]. 工程热物理学报, 2018, 39(9): 2032-2039. |
Fan C H, Wang H J, Song Z C, et al. Investigation on heat transfer deterioration characteristics of supercritical fluid in small diameter tube[J]. Journal of Engineering Thermophysics, 2018, 39(9): 2032-2039. | |
4 | Wang H, Wang S Q, Lu D G. Large eddy simulation on the heat transfer of supercritical pressure water in a circular pipe[J]. Nuclear Engineering and Design, 2021, 377: 111146. |
5 | Bai J H, Pan J, Wu G, et al. Numerical investigation on the heat transfer of supercritical water in non-uniform heating tube[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1320-1332. |
6 | Gao Z G, Bai J H. Numerical analysis on nonuniform heat transfer of supercritical pressure water in horizontal circular tube[J]. Applied Thermal Engineering, 2017, 120: 10-18. |
7 | 潘杰, 杨冬, 朱探, 等. 超临界压力水在垂直上升内螺纹管中的传热特性[J]. 化工学报, 2011, 62(2): 307-314. |
Pan J, Yang D, Zhu T, et al. Heat transfer characteristics of supercritical pressure water in vertical upward rifled tube[J]. CIESC Journal, 2011, 62(2): 307-314. | |
8 | 曲默丰, 梁梓宇, 赵云杰, 等. 低质量流速光管内超超临界水传热特性的实验与数值模拟[J]. 西安交通大学学报, 2018, 52(7): 52-59. |
Qu M F, Liang Z Y, Zhao Y J, et al. Experimental and numerical investigation on heat transfer characteristics of ultra-supercritical water in smooth tube with low mass flux[J]. Journal of Xi'an Jiaotong University, 2018, 52(7): 52-59. | |
9 | 曲默丰, 李娟, 董乐, 等. 半周加热内螺纹管中超临界水传热特性的数值模拟及机理分析[J]. 动力工程学报, 2019, 39(11): 893-899. |
Qu M F, Li J, Dong L, et al. Numerical simulation and mechanism analysis of heat transfer to supercritical water in semi-circumferentially heated ribbed tubes[J]. Journal of Chinese Society of Power Engineering, 2019, 39(11): 893-899. | |
10 | Lei X L, Li H X, Yu S Q, et al. Numerical investigation on the mixed convection and heat transfer of supercritical water in horizontal tubes in the large specific heat region[J]. Computers & Fluids, 2012, 64: 127-140. |
11 | Sahu S, Vaidya A M. Numerical study of enhanced and deteriorated heat transfer phenomenon in supercritical pipe flow[J]. Annals of Nuclear Energy, 2020, 135: 106966. |
12 | Gu H Y, Zhao M, Cheng X. Experimental studies on heat transfer to supercritical water in circular tubes at high heat fluxes[J]. Experimental Thermal and Fluid Science, 2015, 65: 22-32. |
13 | Schatte G A, Kohlhepp A, Wieland C, et al. Development of a new empirical correlation for the prediction of the onset of the deterioration of heat transfer to supercritical water in vertical tubes[J]. International Journal of Heat and Mass Transfer, 2017, 113: 1333-1341. |
14 | 梁梓宇, 万李, 李娟, 等. 并联双通道内超临界水的脉动传热特性[J]. 化工学报, 2019, 70(7): 2488-2495. |
Liang Z Y, Wan L, Li J, et al. Oscillatory heat transfer characteristics of supercritical water in parallel channels[J]. CIESC Journal, 2019, 70(7): 2488-2495. | |
15 | Hao X H, Xu P X, Suo H, et al. Numerical investigation of flow and heat transfer of supercritical water in the water-cooled wall tube[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119084. |
16 | Li F B, Bai B F. A model of heat transfer coefficient for supercritical water considering the effect of heat transfer deterioration[J]. International Journal of Heat and Mass Transfer, 2019, 133: 316-329. |
17 | 张鑫, 刘朝晖, 毕勤成, 等. 倾斜内螺纹管中亚临界及超临界水传热特性研究[J]. 化工学报, 2021, 72(2): 945-955. |
Zhang X, Liu Z H, Bi Q C, et al. Investigation on heat transfer characteristics of subcritical and supercritical water in an inclined rifled tube[J]. CIESC Journal, 2021, 72(2): 945-955. | |
18 | 王为术, 路统, 赵鹏飞, 等. 超临界水冷堆类四边形子通道内超临界水的传热试验研究[J]. 中国电机工程学报, 2014, 34(20): 3356-3361. |
Wang W S, Lu T, Zhao P F, et al. Experimental investigation on heat transfer of supercritical pressure water flowing in the sub-channel with square distribution in supercritical water cooled reactor[J]. Proceedings of the CSEE, 2014, 34(20): 3356-3361. | |
19 | 王为术, 侯彦亮, 徐维晖, 等. 超临界水冷堆类三角形子通道传热不均匀性研究[J]. 核动力工程, 2018, 39(3): 33-39. |
Wang W S, Hou Y L, Xu W H, et al. Investigation on nonuniformity of heat transfer in triangular subchannels of supercritical water cooled reactor[J]. Nuclear Power Engineering, 2018, 39(3): 33-39. | |
20 | 徐维晖, 朱晓静, 王为术, 等. 超临界水在垂直上升类矩形通道内传热与阻力特性试验研究[J]. 中国电机工程学报, 2017, 37(3): 819-826. |
Xu W H, Zhu X J, Wang W S, et al. Experimental study on the heat transfer and flow resistance characteristics of supercritical water in a vertical quasi-quadrilateral channel[J]. Proceedings of the CSEE, 2017, 37(3): 819-826. | |
21 | 朱海雁, 闫晓, 李永亮, 等. 带螺旋肋片方环形通道内超临界水传热特性实验研究[J]. 核动力工程, 2017, 38(6): 18-22. |
Zhu H Y, Yan X, Li Y L, et al. Experimental research on heat transfer of supercritical water in square annular channel[J]. Nuclear Power Engineering, 2017, 38(6): 18-22. | |
22 | Yamagata K, Nishikawa K, Hasegawa S, et al. Forced convective heat transfer to supercritical water flowing in tubes[J]. International Journal of Heat and Mass Transfer, 1972, 15(12): 2575-2593. |
23 | Koshizuka S, Takano N, Oka Y. Numerical analysis of deterioration phenomena in heat transfer to supercritical water[J]. International Journal of Heat and Mass Transfer, 1995, 38(16): 3077-3084. |
24 | Winterton R H S. Where did the Dittus and Boelter equation come from? [J]. International Journal of Heat and Mass Transfer, 1998, 41(4/5): 809-810. |
25 | Fan Y H, Tang G H. Numerical investigation on heat transfer of supercritical carbon dioxide in a vertical tube under circumferentially non-uniform heating[J]. Applied Thermal Engineering, 2018, 138: 354-364. |
26 | Gupta S, Saltanov E, Mokry S J, et al. Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes[J]. Nuclear Engineering and Design, 2013, 261: 116-131. |
27 | Mokry S, Pioro I, Farah A, et al. Development of supercritical water heat-transfer correlation for vertical bare tubes[J]. Nuclear Engineering and Design, 2011, 241(4): 1126-1136. |
28 | Jackson J D. Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors[C]//Proceedings of the 13th Pacific Basin Nuclear Conference. Shenzhen, 2002. |
29 | Bishop A A, Sandberg R O, Tong L S. Forced convection heat transfer to water at near-critical temperatures and super-critical pressures[R]. Pittsburgh, PA, USA: Westinghouse Electric Corporation, 1964. |
30 | Kim D E, Kim M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. |
31 | Fan Y H, Tang G H, Li X L, et al. Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes[J]. Energy, 2019, 170: 480-496. |
32 | Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[6] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[7] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[10] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[11] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[14] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[15] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 297
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 325
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||