化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4257-4267.DOI: 10.11949/0438-1157.20190163
收稿日期:
2019-02-27
修回日期:
2019-08-13
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
郭鹏程
作者简介:
颜建国(1987—),男,博士,讲师,基金资助:
Jianguo YAN1(),Pengcheng GUO1(),Jiaqi MA1,Xingqi LUO1,Qincheng BI2
Received:
2019-02-27
Revised:
2019-08-13
Online:
2019-11-05
Published:
2019-11-05
Contact:
Pengcheng GUO
摘要:
过冷沸腾在高热流冷却场合得到了广泛的应用,如聚变堆偏滤器冷却、压水堆堆芯冷却。其中,过冷沸腾流动阻力是换热系统设计的关键内容之一。试验研究了高热流条件下竖直通道内水的过冷沸腾流动阻力特性,试验段为内径6 mm、长径比44.4的不锈钢圆管。试验参数范围:热通量7.5~12.5 MW/m2,质量流速6000~10000 kg/(m2?s),系统压力3~5 MPa,进口流体温度80~200℃。分析了质量流速、热通量、压力、沸腾数、Jacob数等参数对阻力的影响。结果显示,过冷沸腾流动阻力随着热流及质量流速的增加而增加,随压力增加而减小。将试验数据与文献中的经验关联式作对比,结果表明各关联式的预测误差较大,主要归结于拟合参数及工作流体的差异。研究发现管径尺寸效应也是影响阻力的一个因素,为此在前期成果的基础上,提出了一个添加管径因素修正项的经验关联式,该关联式的预测误差在±18%范围内。
中图分类号:
颜建国, 郭鹏程, 马嘉琦, 罗兴锜, 毕勤成. 高热流条件下过冷沸腾流动阻力特性试验研究[J]. 化工学报, 2019, 70(11): 4257-4267.
Jianguo YAN, Pengcheng GUO, Jiaqi MA, Xingqi LUO, Qincheng BI. Experimental study on pressure drop for subcooled water flow boiling under high heat fluxes[J]. CIESC Journal, 2019, 70(11): 4257-4267.
参数 | 不确定度/% |
---|---|
压力/MPa | 0.25 |
压差/kPa | 5.2 |
质量流速/(kg/(m2?s)) | 0.28 |
流体温度/℃ | 0.5 |
壁面温度/℃ | 0.4 |
热通量/(MW/m2) | 5.12 |
表1 主要参数的不确定度
Table 1 Uncertainties of experimental parameters
参数 | 不确定度/% |
---|---|
压力/MPa | 0.25 |
压差/kPa | 5.2 |
质量流速/(kg/(m2?s)) | 0.28 |
流体温度/℃ | 0.5 |
壁面温度/℃ | 0.4 |
热通量/(MW/m2) | 5.12 |
作者 | 关联式 | 适用范围 |
---|---|---|
Owens-Schrock[ | | p = 0.34~2.76 MPa;G = 1143~5322 kg/(m2?s);q = 0.675~4 MW/m2;d = 3, 4.63 mm |
Tarasova et al.[ | | p = 0.98~19.6 MPa;G = 1400~3000 kg/(m2?s);q = 0.58~1.75 MW/m2;d = 2.89, 6.34, 8.31 mm |
Hahne et al.[ | (C = 80,水;C = 500,R12和R134a) | p = 0.8~2 MPa;G = 750~3000 kg/(m2?s);q < 0.208 MW/m2;ΔT sub = 2~47.6℃;d = 5.5~9.5 mm |
Tong et al.[ | | p = 0.4~1.6 MPa;G = 25000~45000 kg/(m2?s);q cr = 50~80 MW/m2;T b, i = 22~66℃;d = 1.05~2.44 mm |
Baburajan et al.[ | | G = 450~935 kg/(m2?s);d = 5.5, 7.5, 9.5 mm;ΔT sub, i = 29, 50, 70℃;L = 550~1000 mm |
Yan et al.[ | | p = 3~5 MPa;G = 6000~10000 kg/(m2?s);q = 7.5~12.5 MW/m2;T b, i = 80~220℃;ΔT sub, i = 40~185℃;d = 9 mm;L = 400 mm |
表2 过冷沸腾阻力关联式
Table 2 Empirical correlations for subcooled boiling pressure drop
作者 | 关联式 | 适用范围 |
---|---|---|
Owens-Schrock[ | | p = 0.34~2.76 MPa;G = 1143~5322 kg/(m2?s);q = 0.675~4 MW/m2;d = 3, 4.63 mm |
Tarasova et al.[ | | p = 0.98~19.6 MPa;G = 1400~3000 kg/(m2?s);q = 0.58~1.75 MW/m2;d = 2.89, 6.34, 8.31 mm |
Hahne et al.[ | (C = 80,水;C = 500,R12和R134a) | p = 0.8~2 MPa;G = 750~3000 kg/(m2?s);q < 0.208 MW/m2;ΔT sub = 2~47.6℃;d = 5.5~9.5 mm |
Tong et al.[ | | p = 0.4~1.6 MPa;G = 25000~45000 kg/(m2?s);q cr = 50~80 MW/m2;T b, i = 22~66℃;d = 1.05~2.44 mm |
Baburajan et al.[ | | G = 450~935 kg/(m2?s);d = 5.5, 7.5, 9.5 mm;ΔT sub, i = 29, 50, 70℃;L = 550~1000 mm |
Yan et al.[ | | p = 3~5 MPa;G = 6000~10000 kg/(m2?s);q = 7.5~12.5 MW/m2;T b, i = 80~220℃;ΔT sub, i = 40~185℃;d = 9 mm;L = 400 mm |
关联式 | MAE/% | RMSE/% |
---|---|---|
Owens-Schrock[ | 14.34 | 25.40 |
Tarasova et al. [ | 57.66 | 60.97 |
Hahne et al. [ | 16.97 | 18.37 |
Baburajan et al. [ | 50.64 | 52.10 |
Tong et al. [ | 18.59 | 22.79 |
Yan et al. [ | 10.04 | 10.27 |
新公式 | 5.48 | 5.53 |
表3 过冷沸腾阻力关联式的预测性能
Table 3 Prediction performances of empirical correlations for subcooled boiling pressure drop
关联式 | MAE/% | RMSE/% |
---|---|---|
Owens-Schrock[ | 14.34 | 25.40 |
Tarasova et al. [ | 57.66 | 60.97 |
Hahne et al. [ | 16.97 | 18.37 |
Baburajan et al. [ | 50.64 | 52.10 |
Tong et al. [ | 18.59 | 22.79 |
Yan et al. [ | 10.04 | 10.27 |
新公式 | 5.48 | 5.53 |
1 | Ongena J , Ogawa Y . Nuclear fusion: status report and future prospects[J]. Energy Policy, 2016, 96: 770-778. |
2 | 吴宜灿, 郁杰, 胡丽琴, 等 . 聚变堆安全特性评价研究[J]. 核科学与工程, 2016, 36(6): 802-810. |
Wu Y C , Yu J , Hu L Q , et al . Assessment on safety characteristics of fusion nuclear reactor[J]. Nuclear Science and Engineering, 2016, 36(6): 802-810. | |
3 | Dobran F . Fusion energy conversion in magnetically confined plasma reactors[J]. Progress in Nuclear Energy, 2012, 60(Supplement C): 89-116. |
4 | 钱新元, 宋云涛, 叶民友, 等 . 聚变堆偏滤器冷却通道结构优化分析[J]. 原子能科学技术, 2015, 49(7): 1273-1279. |
Qian X Y , Song Y T , Ye M Y , et al . Optimization analysis for structure of cooling channel of fusion reactor divertor[J]. Atomic Energy Science and Technology, 2015, 49(7): 1273-1279. | |
5 | 方贤德, 田露, 周展如, 等 . 水过冷流动沸腾传热关联式研究[J]. 工程热物理学报, 2017, 38(6): 1243-1249. |
Fang X D , Tian L , Zhou Z R , et al . Study of correlation for subcooled flow boiling heat transfer of water[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1243-1249. | |
6 | Yan J G , Bi Q C , Liu Z H , et al . Subcooled flow boiling heat transfer of water in a circular tube under high heat fluxes and high mass fluxes[J]. Fusion Engineering and Design, 2015, 100: 406-418. |
7 | 窦从从, 毛羽, 王娟, 等 . 高过冷度下直管内气液两相传热特性[J]. 化工学报, 2010, 61(9): 2314-2319. |
Dou C C , Mao Y , Wang J , et al . Gas-liquid two phase flow heat transfer at high subcooling in vertical tube[J]. CIESC Journal, 2010, 61(9): 2314-2319. | |
8 | 赵楠, 张旺, 杨立新 . 不同宽度窄缝通道过冷沸腾[J]. 化工学报, 2016, 67(S1): 47-56. |
Zhao N , Zhang W , Yang L X . Subcooled boiling in narrow channels with different sizes[J]. CIESC Journal, 2016, 67(S1): 47-56. | |
9 | Hata K , Fukuda K , Masuzaki S . Mechanism of critical heat flux during flow boiling of subcooled water in a circular tube at high liquid Reynolds number[J]. Experimental Thermal and Fluid Science, 2016, 70: 255-269. |
10 | Yan J G , Bi Q C , Zhu G , et al . Critical heat flux of highly subcooled water flow boiling in circular tubes with and without internal twisted tapes under high mass fluxes[J]. International Journal of Heat and Mass Transfer, 2016, 95: 606-619. |
11 | 李娟, 朱章钰, 彭浩, 等 . 变截面翅片通道内过冷沸腾可视化试验[J]. 化工学报, 2018, 69(6): 2404-2409. |
Li J , Zhu Z Y , Peng H , et al . Visualized investigation of subcooled boiling in variable cross-section fin channels[J]. CIESC Journal, 2018, 69(6): 2404-2409. | |
12 | 刘传成, 阎昌琪, 孙立成 . 摇摆运动下矩形窄通道内流动沸腾阻力特性[J]. 原子能科学技术, 2012, 46(12): 1429-1433. |
Liu C C , Yan C Q , Sun L C . Pressure drop characteristics of flow boiling in narrow rectangular channel under rolling motion[J]. Atomic Energy Science and Technology, 2012, 46(12): 1429-1433. | |
13 | 罗小平, 张霖, 刘波 . 微细通道纳米制冷剂流动沸腾阻力特性[J]. 化工进展, 2016, 35(12): 3763-3770. |
Luo X P , Zhang L , Liu B . A study on flow boiling resistance of nanorefrigerant in rectangular microchannels[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3763-3770. | |
14 | Guo P C , Wang J H , Yan J G , et al . Experimental study on single-phase frictional pressure drop for water flow under high heat fluxes[J]. Fusion Engineering and Design, 2018, 137: 1-9. |
15 | 严润刚, 潘良明, 何辉, 等 . 多微通道内两相流动阻力特性及气泡行为[J]. 化工学报, 2017, 68(S1): 66-70. |
Yan R G , Pan L M , He H , et al . Characteristics of two-phase flow resistance and bubble behavior in microchannels[J]. CIESC Journal, 2017, 68(S1): 66-70. | |
16 | 周云龙, 孙振国 . 基于两相流的微通道冷却技术研究进展及展望[J]. 热能动力工程, 2016, 31(7): 1-6+130. |
Zhou Y L , Sun Z G . Research progress and prospects of micro-channel cooling technology based on two-phase flow[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(7): 1-6+130. | |
17 | 马有福, 彭杰伟, 吕俊复, 等 . 水平圆管内气液两相逆向流动特性的管径尺度效应实验[J]. 中国电机工程学报, 2018, 38(19): 5772-5778+5933. |
Ma Y F , Peng J W , Lyu J F , et al . Experiment of diameter effect on gas-liquid counter current flow characteristics in horizontal circular pipes[J]. Proceedings of the CSEE, 2018, 38(19): 5772-5778+5933. | |
18 | 金光远, 韩月阳 . 基于分相流模型的棒束通道内两相流阻力特性研究[J]. 动力工程学报, 2018, 38(5): 418-424. |
Jin G Y , Han Y Y . Study on two-phase flow resistance in a rod bundle channel based on seperated models[J]. Journal of Chinese Society of Power Engineering, 2018, 38(5): 418-424. | |
19 | 朱兴业, 蔡彬, 涂琴 . 轻小型喷灌机组逐级阻力损失水力计算[J]. 排灌机械工程学报, 2011, 29(2): 180-184. |
Zhu X Y , Cai B , Tu Q . Head loss hydraulic calculation step by step for light and small sprinkle irrigation system[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(2): 180-184. | |
20 | Yan J G , Guo P C , Bi Q C , et al . Pressure drop for highly subcooled water flow boiling under high heat and mass fluxes[J]. Applied Thermal Engineering, 2017, 124: 1061-1074. |
21 | Owens W L , Schrock V E . Local pressure gradients for subcooled boiling of water in vertical tubes[R]. ASME Paper, 60-WA-249. 1960. |
22 | Tarasova N V , Leont'ev A I , Hlopuskin V I , et al . Pressure drop of boiling subcooled water and steam-water mixture flowing in heated channels[C]//Proceedings of the 3rd International Heat and Transfer Conference. Chicago, USA, 1966: 178-183. |
23 | Hahne E , Spindler K , Skok H . A new pressure drop correlation for subcooled flow boiling of refrigerants[J]. International Journal of Heat and Mass Transfer, 1993, 36(17): 4267-4274. |
24 | Tong W , Bergles A E , Jensen M K . Pressure drop with highly subcooled flow boiling in small-diameter tubes[J]. Experimental Thermal and Fluid Science, 1997, 15(3): 202-212. |
25 | Baburajan P K , Bisht G S , Gupta S K , et al . Measurement of subcooled boiling pressure drop and local heat transfer coefficient in horizontal tube under LPLF conditions[J]. Nuclear Engineering and Design, 2013, 255: 169-179. |
26 | Khalili S A , Koşar A . Numerical and experimental investigation on the effects of diameter and length on high mass flux subcooled flow boiling in horizontal microtubes[J]. International Journal of Heat and Mass Transfer, 2016, 92: 824-837. |
27 | Dormer Jr T , Bergles A E . Pressure drop with surface boiling in small-diameter tubes[R]. MIT Report, No. 8767-31. 1964. |
28 | Inasaka F , Nariai H , Shimura T . Pressure drop of subcooled flow boiling in narrow tube[J]. Transactions of the Japan Society of Mechanical Engineers B, 1987, 53: 3093-3099. |
29 | Lee J , Mudawar I . Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks (Ⅱ): Subcooled boiling pressure drop and heat transfer[J]. International Journal of Heat and Mass Transfer, 2008, 51(17/18): 4327-4341. |
30 | Kim S M , Mudawar I . Consolidated method to predicting pressure drop and heat transfer coefficient for both subcooled and saturated flow boiling in micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3720-3731. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[8] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[9] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[10] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[13] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[14] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[15] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||