化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3320-3328.DOI: 10.11949/0438-1157.20190313
收稿日期:
2019-03-31
修回日期:
2019-05-28
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
张小斌
作者简介:
谢黄骏(1994—),男,博士研究生,基金资助:
Huangjun XIE1(),Hong CHEN2,Xu GAO2,Xudong ZHENG3,Xiaobin ZHANG1(
)
Received:
2019-03-31
Revised:
2019-05-28
Online:
2019-09-05
Published:
2019-09-05
Contact:
Xiaobin ZHANG
摘要:
针对低温流体液、气两相的介电特性,通过向传统的电容-介电分布函数关系的线性近似方程中引入修正偏量,得到了修正的电容层析成像线性反演算法。以8电极电容层析成像传感器作为几何模型,对液氧-氧气管内两相流进行了模拟,对比了4种不同流型下原始线性算法、修正的线性算法及以全变分1范数正则化为代表的非线性算法的反演结果。采用相关性系数及图像误差定量衡量了反演结果的质量,结果表明,修正线性反演算法显著提升了反演结果的质量,全变分1范数正则化的求解耗时是修正线性算法的10倍以上。当赋以3%测量噪声时,非线性算法表现出对噪声极强的敏感性,修正线性算法具备更好的抗噪能力和反演结果准确性。
中图分类号:
谢黄骏, 陈虹, 高旭, 郑旭东, 张小斌. 应用于低温流体两相流测量的修正电容层析成像线性反演算法[J]. 化工学报, 2019, 70(9): 3320-3328.
Huangjun XIE, Hong CHEN, Xu GAO, Xudong ZHENG, Xiaobin ZHANG. Modified electrical capacitance tomography linear inversion algorithms for cryogenic fluids two-phase flow measurement[J]. CIESC Journal, 2019, 70(9): 3320-3328.
流体介质 | 相对介电常数 |
---|---|
水/空气 (300 K温度下) | 77.747/1.0005 |
液氮/氮气(77 K温度下) | 1.4337/1.0021 |
液氧/氧气 (90 K温度下) | 1.4877/1.0016 |
液化/气态甲烷 (112 K温度下) | 1.6299/1.0020 |
表1 1 atm(101325 Pa)下不同流体介质的相对介电常数[28]
Table 1 Relative permittivity of different fluids at 1 atm(101325 Pa)[28]
流体介质 | 相对介电常数 |
---|---|
水/空气 (300 K温度下) | 77.747/1.0005 |
液氮/氮气(77 K温度下) | 1.4337/1.0021 |
液氧/氧气 (90 K温度下) | 1.4877/1.0016 |
液化/气态甲烷 (112 K温度下) | 1.6299/1.0020 |
图6 原始线性算法、修正线性算法及全变分1范数正则化算法反演结果对比
Fig.6 Comparisons of inversion results calculated by original linear algorithms, modified linear algorithms and TV L 1-norm algorithm
Algorithms | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
TR | 0.395 | 0.388 | 0.398 | 0.399 |
MTR | 0.420 | 0.402 | 0.427 | 0.400 |
ITR | 0.613 | 0.605 | 0.649 | 0.614 |
MITR | 0.680 | 0.704 | 0.734 | 0.728 |
SIRT | 0.487 | 0.425 | 0.525 | 0.411 |
MSIRT | 0.570 | 0.549 | 0.580 | 0.515 |
TV L 1-norm | 7.999 | 7.954 | 7.925 | 7.978 |
表2 不同算法的求解耗时/s
Table 2 Computational time of inversion algorithms/s
Algorithms | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
TR | 0.395 | 0.388 | 0.398 | 0.399 |
MTR | 0.420 | 0.402 | 0.427 | 0.400 |
ITR | 0.613 | 0.605 | 0.649 | 0.614 |
MITR | 0.680 | 0.704 | 0.734 | 0.728 |
SIRT | 0.487 | 0.425 | 0.525 | 0.411 |
MSIRT | 0.570 | 0.549 | 0.580 | 0.515 |
TV L 1-norm | 7.999 | 7.954 | 7.925 | 7.978 |
图9 噪声干扰条件下原始线性算法、修正线性算法及全变分1范数正则化算法反演结果对比
Fig.9 Comparisons of inversion results calculated by original linear algorithms, modified linear algorithms and TV L 1-norm algorithm under noise interference
1 | 杨道业, 施源, 徐锌锋 . 基于双截面ECT的气/固两相流参数检测系统[J]. 仪器仪表学报, 2013, 34(9): 1968-1974. |
Yang D Y , Shi Y , Xu X F . Parameter measurement system for gas/solid two-phase flow based on twin-plane electrical capacitance tomography [J]. Chinese Journal of Science Instrument, 2013, 34(9): 1968-1974. | |
2 | Yang W Q . Sensors and instrumentation for monitoring and control of multi-phase separation [J]. Measurement and Control, 2006, 39(6): 178-184. |
3 | 罗琴, 赵银峰, 叶茂, 等 . 电容层析成像在气-固流化床测量中的应用[J]. 化工学报, 2014, 65(7): 2504-2512. |
Luo Q , Zhao Y F , Ye M , et al . Application of electrical capacitance tomography for gas-solid fluidized bed measurement [J]. CIESC Journal, 2014, 65(7): 2504-2512. | |
4 | Xu Z , Jiang Y D , Wang B L , et al . Sensitivity distribution of CCERT sensor under different excitation patterns [J]. IEEE Access, 2017, 5: 14830-14836. |
5 | No H C , Jeong J H . Flooding correlation based on the concept of hyperbolicity breaking in a vertical annular flow[J]. Nuclear Engineering & Design, 1996, 166(2): 249-258. |
6 | Wongwises S , Pipathattakul M . Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel [J]. Experimental Thermal & Fluid Science, 2006, 30(4): 345-354. |
7 | Zhang X B , Zhu J K , Wu Z , et al . Performance prediction of structured packing column for cryogenic air separation with hybrid model [J]. Chinese Journal of Chemical Engineering, 2014, 22(8): 930-936. |
8 | Chen J Y , Wang Y C , Zhang W , et al . Capacitance-based liquid holdup measurement of cryogenic two-phase flow in a nearly-horizontal tube [J]. Cryogenics, 2017, 84: 69-75. |
9 | Wang H X , Tang L , Cao Z . An image reconstruction algorithm based on total variation with adaptive mesh refinement for ECT [J]. Flow Measurement and Instrumentation, 2007, 18(5/6): 262-267. |
10 | Wu T T , Lange K . Coordinate descent algorithms for lasso penalized regression [J]. The Annals of Applied Statistics, 2008, 2(1): 224-244. |
11 | Xie C G , Huang S M , Hoyle B S , et al . Electrical capacitance tomography for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors [J]. Circuits Devices & Systems IEE Proceedings G, 1992, 139(1): 89-98. |
12 | Peng L H , Merkus H , Scarlett B . Using regularization methods for image reconstruction of electrical capacitance tomography [J]. Particle & Particle Systems Characterization, 2000, 17(3): 96-104. |
13 | Lionheart W R B . Reconstruction algorithms for permittivity and conductivity imaging [C]//Proceedings of the 2nd World Congress on Industrial Process Tomography. 2001: 4-11. |
14 | Yan H , Liu C , Gao J . Electrical capacitance tomography image reconstruction based on singular value decomposition[C]// World Congress on Intelligent Control & Automation. IEEE, 2004: 3783-3786. |
15 | Yang W Q , Peng L H . Image reconstruction algorithms for electrical capacitance tomography [J]. Measurement Science & Technology, 2003, 14: R1-R13. |
16 | Yang W Q , Spink D M , York T A , et al . An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography [J]. Measurement Science & Technology, 1999, 10(11): 1065. |
17 | Kak A C , Slaney M . Principles of Computerized Tomographic Imaging [M]. New York: IEEE Press, 1988. |
18 | Su B L , Zhang Y H , Peng L H , et al . The use of simultaneous iterative reconstruction technique for electrical capacitance tomography [J]. Chemical Engineering Journal, 2000, 77(1): 37-41. |
19 | 陈夏, 胡红利, 高享想, 等 . 代数重建和同步迭代重建在电容层析成像中的比较研究[J]. 西安交通大学学报, 2011, 45(4): 25-29. |
Chen X , Hu H L , Gao X X , et al . Comparison of algebraic reconstruction technique and simultaneous iterative reconstruction technique in electrical capacitance tomography image reconstruction [J]. Journal of Xi’an Jiaotong University, 2011, 45(4): 25-29. | |
20 | Fang W F . A nonlinear image reconstruction algorithm for electrical capacitance tomography [J]. Measurement Science and Technology, 2004, 15(10): 2124-2132. |
21 | Osher S , Burger M , Goldfarb D , et al . An iterative regularization method for total variation-based image restoration [J]. Multiscale Modeling & Simulation, 2005, 4(2): 460-489. |
22 | 雷兢, 刘石, 李志宏 . 一个基于1范数的电容层析成像图像重建迭代算法[J]. 仪器仪表学报, 2008, 29(7): 1355-1358. |
Lei J , Liu S , Li Z H . Image reconstruction iteration algorithm based on 1-norm for electrical capacitance tomography [J]. Chinese Journal of Scientific Instrument, 2008, 29(7): 1355-1358. | |
23 | 王丕涛, 王化祥, 孙犇渊 . 基于l1范数的电容层析成像图像重建算法[J]. 中国电机工程学报, 2015, 35(18): 4709-4714. |
Wang P T , Wang H X , Sun B Y . l1-norm-based image reconstruction algorithm for electrical capacitance tomography [J]. Proceedings of the CSEE, 2015, 35(18): 4709-4714. | |
24 | Yan Y , Liu L J , Xu H , et al . Image reconstruction in electrical capacitance tomography using multiple linear regression and regularization[J]. Measurement Science & Technology, 2001, 12(5): 575-581. |
25 | Marashdeh Q , Teixeira F L . Sensitivity matrix calculation for fast 3-D electrical capacitance tomography (ECT) of flow systems[J]. IEEE Transactions on Magnetics, 2004, 40(2): 1204-1207. |
26 | Gunes C , Marashdeh Q , Teixeira F L . A comparison between electrical capacitance tomography and displacement-current phase tomography [J]. IEEE Sensors Journal, 2017, 17(24): 8037-8046. |
27 | 王彦飞 . 反演问题的计算方法及其应用[M]. 北京: 高等教育出版社, 2007. |
Wang Y F . The Calculating Methods and Applications of Inverse Problem [M]. Beijing: Science Press, 2007. | |
28 | Rumble J . CRC Hanfbook of Chemistry and Physis [M]. 99th edition. Boca Raton: CRC Press, 2018. |
29 | 杨晓伟, 郝志峰 . 支持向量机的算法设计与分析[M]. 北京: 科学出版社, 2013. |
Yang X W , Hao Z F . Algorithm Design and Analysis of Support Vector Machines[M]. Beijing: Science Press, 2013. | |
30 | 郭威 . CT不完全投影数据重建算法研究[D]. 长春: 吉林大学, 2011. |
Guo W . Research on reconstruction algorithms of CT with incomplete projection data [D]. Changchun: Jilin University, 2011. | |
31 | 吴丽华 . CT迭代重建算法的研究[D]. 沈阳: 东北大学, 2008. |
Wu L H . Research on iterative reconstruction algorithms of computed tomography[D]. Shenyang: Northeastern University, 2008. | |
32 | 董向元, 刘石, 阎润生, 等 . 电容层析成像中通用迭代法的研究[J]. 仪器仪表学报, 2006, 27(1): 23-25. |
Dong X Y , Liu S , Yan R S , et al . A general iterative algorithm for image reconstruction with electrical capacitance tomography [J]. Chinese Journal of Science Instrument, 2006, 27(1): 23-25. |
[1] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[6] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[7] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[11] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[12] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[13] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[14] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[15] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 250
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 423
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||