化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4172-4180.DOI: 10.11949/0438-1157.20190378
收稿日期:
2019-04-11
修回日期:
2019-07-03
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
薛冰
作者简介:
张林生(1996—),男,硕士研究生,基金资助:
Linsheng ZHANG1(),Zhouming LIU2,Guangyao LI1,Tingting CHEN1,Bing XUE1()
Received:
2019-04-11
Revised:
2019-07-03
Online:
2019-11-05
Published:
2019-11-05
Contact:
Bing XUE
摘要:
在基于直接接触换热法的开式吸附热泵系统中,引入预吸附过程或预设传质通道,考察其对蒸汽生成和系统性能的影响。实验结果表明,预吸附蒸汽压力为0.0680 MPa(饱和温度=89.2℃),系统生成高温蒸汽的平均温度为203℃,系统整体温升为98.4℃,相对于无预吸附系统,生成蒸汽的时间和质量分别增加52.2%和27.0%,系统制热系数和制热功率分别提升28.2%和27.2%。预置树枝状传质通道后,生成蒸汽的时间和质量分别增加了17.8%和8.75%,系统制热系数和制热功率分别提升8.16%和9.05%。预吸附过程使吸附床较快达到整体吸附和热力平衡,缩短蒸汽到达床层出口的时间。预吸附压力越高,系统到达整体吸附平衡的用时越短,蒸汽生成时间越早。传质通道促进吸附床局部平衡的达成,减小局部传质阻力,使部分蒸汽可迅速到达出口。整体和局部吸附平衡的快速达成,均强化了蒸汽的动态生成过程,提升系统整体性能。
中图分类号:
张林生, 刘周明, 李光耀, 陈婷婷, 薛冰. 吸附过程强化对提升高温热泵蒸汽生成性能的影响[J]. 化工学报, 2019, 70(11): 4172-4180.
Linsheng ZHANG, Zhouming LIU, Guangyao LI, Tingting CHEN, Bing XUE. Effect of adsorption process intensification for high-temperature steam generation in adsorption heat pump[J]. CIESC Journal, 2019, 70(11): 4172-4180.
实验设备 | 型号 | 参数/精度 |
---|---|---|
恒温水浴箱 | LICHEN HH-420 | 420 mm |
隔膜泵 | CNP160608-13 | 0~10 L/h |
真空泵 | 2XZ-4 | 4 L/s, 0.1 MPa~0.06 Pa |
冷凝器 | DLSB-5L/10 | 10~290 W/℃ |
热电偶 | LED-KZ-K | 0~800℃,±1.5℃ |
数据采集仪 | midi LOGGER GL840 | -100~1370℃,±0.8℃ |
电子天平 | HENGBO30002 | 0~300 g,±0.01 g |
表1 主要仪器详细参数
Table 1 Detailed information for equipment and instruments
实验设备 | 型号 | 参数/精度 |
---|---|---|
恒温水浴箱 | LICHEN HH-420 | 420 mm |
隔膜泵 | CNP160608-13 | 0~10 L/h |
真空泵 | 2XZ-4 | 4 L/s, 0.1 MPa~0.06 Pa |
冷凝器 | DLSB-5L/10 | 10~290 W/℃ |
热电偶 | LED-KZ-K | 0~800℃,±1.5℃ |
数据采集仪 | midi LOGGER GL840 | -100~1370℃,±0.8℃ |
电子天平 | HENGBO30002 | 0~300 g,±0.01 g |
实验分组 | 预吸附温度 | 传质通道 | |
---|---|---|---|
对比实验 | DB | — | — |
预吸附实验 | YXF-1 | 74.0℃ | — |
YXF-2 | 89.2℃ | — | |
传质通道实验 | SZ | — | 树枝状通道 |
PG | — | 盘管状通道 |
表2 具体实验设计
Table 2 Experimental operation conditions
实验分组 | 预吸附温度 | 传质通道 | |
---|---|---|---|
对比实验 | DB | — | — |
预吸附实验 | YXF-1 | 74.0℃ | — |
YXF-2 | 89.2℃ | — | |
传质通道实验 | SZ | — | 树枝状通道 |
PG | — | 盘管状通道 |
Group | COPh | GTL | SHPs | Em/% | EQ/% |
---|---|---|---|---|---|
DB | 0.100 | 97.0 | 0.0534 | 0.06 | -4.8 |
YXF-1 | 0.119 | 98.9 | 0.0626 | 0.5 | 10.0 |
YXF-2 | 0.129 | 98.4 | 0.0679 | -0.75 | 9.8 |
SZ | 0.108 | 103.9 | 0.0582 | -1.3 | -6.2 |
PG | 0.095 | 97.7 | 0.0500 | 2.6 | -5.0 |
表3 系统性能参数及偏差
Table 3 System performance parameters and deviations
Group | COPh | GTL | SHPs | Em/% | EQ/% |
---|---|---|---|---|---|
DB | 0.100 | 97.0 | 0.0534 | 0.06 | -4.8 |
YXF-1 | 0.119 | 98.9 | 0.0626 | 0.5 | 10.0 |
YXF-2 | 0.129 | 98.4 | 0.0679 | -0.75 | 9.8 |
SZ | 0.108 | 103.9 | 0.0582 | -1.3 | -6.2 |
PG | 0.095 | 97.7 | 0.0500 | 2.6 | -5.0 |
1 | 胡山鹰, 陈定江, 金涌, 等. 化学工业绿色发展战略研究: 基于化肥和煤化工行业的分析[J]. 化工学报, 2014, 65(7): 2704-2709. |
HuS Y, ChenD J, JinY, et al. Green development strategies for chemical industry in China: based on analysis of fertilizer industry and coal chemical industry[J]. CIESC Journal, 2014, 65(7): 2704-2709. | |
2 | XuZ Y, WangR Z, YangC. Perspectives for low-temperature waste heat recovery[J]. Energy, 2019, 176: 1037-1043. |
3 | ShaoL, MaX, WeiX, et al. Design and experimental study of a small-sized organic Rankine cycle system under various cooling conditions[J]. Energy, 2017, 130: 236-245. |
4 | ZhangH, ZhaoH, LiZ, et al. Optimization potentials for the waste heat recovery of a gas-steam combined cycle power plant based on absorption heat pump[J]. Journal of Thermal Science, 2018, 28(4): 283-293. |
5 | JoãoM S D, VítorA F C. Adsorption heat pumps for heating applications: a review of current state, literature gaps and development challenges[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 317-327. |
6 | 王如竹. 吸附式制冷新技术[J]. 化工学报, 2000, 51(4): 435-442. |
WangR Z. New technology of adsorption refrigeration[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(4): 435-442. | |
7 | KayalS, SunB, SahaB B. Adsorption characteristics of AQSOA zeolites and water for adsorption chillers[J]. International Journal of Heat & Mass Transfer, 2016, 92: 1120-1127. |
8 | MeunierF. Second law analysis of a solid adsorption heat pump operating on reversible cascade cycles: application to the zeolite-water pair[J]. Journal of Heat Recovery Systems, 1985, 5(2): 133-141. |
9 | SultanM, MiyazakiT, KoyamaS, et al. Optimization of adsorption isotherm types for desiccant air-conditioning applications[J]. Renewable Energy, 2018, 121: 441-450. |
10 | XuS Z, Lemington, WangR Z, et al. A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J]. Energy Conversion and Management, 2018, 171: 98-109. |
11 | PalA, ShahromM S R, MoniruzzamanM, et al. Ionic liquid as a new binder for activated carbon based consolidated composite adsorbents[J]. Chemical Engineering Journal, 2017, 326: 980-986. |
12 | BonaccorsiL, CalabreseL, AliotoS, et al. Surface silanation of alumina-silica zeolites for adsorption heat pumping[J]. Renewable Energy, 2017, 110: 79-86. |
13 | BonaccorsiL, ProverbioE. Synthesis of thick zeolite 4A coatings on stainless steel[J]. Microporous & Mesoporous Materials, 2004, 74(1/2/3): 221-229. |
14 | SchnabelL, TatlierM, SchmidtF, et al. Adsorption kinetics of zeolite coatings directly crystallized on metal supports for heat pump applications (adsorption kinetics of zeolite coatings) [J]. Applied Thermal Engineering, 2010, 30(11/12): 1409-1416. |
15 | AmmannJ, MichelB, StudartA R, et al. Sorption rate enhancement in SAPO-34 zeolite by directed mass transfer channels[J]. International Journal of Heat and Mass Transfer, 2019, 130: 25-32. |
16 | 徐敬玉. 流态化吸附制冷技术的理论及实验研究[D]. 杭州: 浙江大学, 2007. |
XuJ Y. Theoretical and experimental research on fluidized adsorption refrigeration technology[D]. Hangzhou: Zhejiang University, 2007. | |
17 | PanQ W, WangR Z. Experimental study on operating features of heat and mass recovery processes in adsorption refrigeration[J]. Energy, 2017, 135: 361-369. |
18 | 徐圣知, 王丽伟, 王如竹. 回质回热吸附式制冷循环的热力学分析与方案优选[J]. 化工学报, 2016, 67(6): 2202-2210. |
XuS Z, WangL W, WangR Z. Thermodynamic analysis of mass and heat recovery adsorption refrigeration cycles and scheme selection[J]. CIESC Journal, 2016, 67(6): 2202-2210. | |
19 | MetcalfS J, CritophR E, Tamainot-TeltoZ. Optimal cycle selection in carbon-ammonia adsorption cycles[J]. International Journal of Refrigeration, 2012, 35(3): 571-580. |
20 | PanQ W, WangR Z, VorayosN, et al. A novel adsorption heat pump cycle: cascaded mass recovery cycle[J]. International Journal of Refrigeration, 2018, 95: 21-27. |
21 | TsoaC Y, ChanaK C, ChaoC Y H. Experimental performance analysis on an adsorption cooling system using zeolite 13X/CaCl2 adsorbent with various operation sequences[J]. International Journal of Heat and Mass Transfer, 2015, 85: 343-355. |
22 | 高娇, 王丽伟, 周志松, 等. 多盐复合吸附剂的非平衡吸附/解吸特性[J]. 化工学报, 2016, 67(S2): 184-189. |
GaoJ, WangL W, ZhouZ S, et al. Nonequilibrium adsorption/desorption characteristics of multisalt complex adsorbents[J]. CIESC Journal, 2016, 67(S2): 184-189. | |
23 | YangP Z. Heat and mass transfer in adsorbent bed with consideration of non-equilibrium adsorption[J]. Applied Thermal Engineering, 2009, 29(14/15): 3198-3203. |
24 | HauerA. Open adsorption system for an energy efficient dishwasher[J]. Chemie Ingenieur Technik - CIT, 2011, 83(1/2): 61-66. |
25 | XueB, IwamaY, TanakaY, et al. Cyclic steam generation from a novel zeolite–water adsorption heat pump using low-grade waste heat[J]. Experimental Thermal and Fluid Science, 2013, 46: 54-63. |
26 | 薛冰, 姚志敏, 盛遵荣, 等. 颗粒分布对吸附热变换器内传热传质的影响[J]. 化工学报, 2016, 67(S1): 174-180. |
XueB, YaoZ M, ShengZ R, et al. Effect of particle distribution on heat and mass transfer inside adsorption heat transformer[J]. CIESC Journal, 2016, 67(S1): 174-180. | |
27 | OktarianiE, TaharaK, NakashimaK, et al. Experimental investigation on the adsorption process for steam generation using a zeolite-water system[J]. Journal of Chemical Engineering of Japan, 2012, 45(5): 355-362. |
28 | XueB, MengX R, WeiX L, et al. Dynamic study of steam generation from low-grade waste heat in a zeolite-water adsorption heat pump[J]. Applied Thermal Engineering, 2015, 88: 451-458. |
29 | ClausenL R. Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification[J]. Energy, 2017, 125: 327-336. |
30 | HohenwarterK, PrammerW, AichingerW, et al. An evaluation of different steam disinfection protocols for cystic fibrosis nebulizers[J]. Journal of Cystic Fibrosis, 2016, 15: 78-84. |
31 | 盛遵荣, 姚志敏, 薛冰, 等. 操作参数对吸附热变换器生成高温蒸汽的性能影响分析[J]. 高校化学工程学报, 2017, 31(2): 299-307. |
ShengZ R, YaoZ M, XueB, et al. Sensitivity analysis of operation parameters on high-temperature steam generation of an adsorption heat transformer[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(2): 299-307. | |
32 | XueB, YeS, ZhangL S, et al. High-temperature steam generation from low-grade waste heat from an adsorptive heat transformer with composite zeolite-13X/CaCl2[J]. Energy Conversion and Management, 2019, 186: 93-102. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[5] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[6] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[7] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[8] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[9] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[10] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[11] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[12] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[13] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[14] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[15] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||