化工学报 ›› 2020, Vol. 71 ›› Issue (1): 417-425.DOI: 10.11949/0438-1157.20191236
• 材料化学工程与纳米技术 • 上一篇
收稿日期:
2019-10-23
修回日期:
2019-11-14
出版日期:
2020-01-05
发布日期:
2020-01-05
通讯作者:
张庆国
作者简介:
魏颖(1979—),女,博士,副教授,基金资助:
Ying WEI1(),Mingsong TAO1,Yaofeng ZHU1,Qingguo ZHANG1,2(
)
Received:
2019-10-23
Revised:
2019-11-14
Online:
2020-01-05
Published:
2020-01-05
Contact:
Qingguo ZHANG
摘要:
应用一步电化学剥离法,在离子液体1-丁基-3-甲基咪唑四氟硼酸盐([Bmim][BF4])电解液中电解石墨棒,产物进行热处理,制得石墨烯/离子液体复合物(GNs/[Bmim][BF4])。对此复合物进行了红外光谱(FT-IR)、扫描电镜(SEM)、X射线粉末衍射(XRD)、拉曼光谱(Raman)等表征,发现GNs/[Bmim][BF4]复合物具有良好的孔隙结构,在充放电过程中有利于电极结构的保持和电荷的转移。将其应用到超级电容器中,发现其性能较石墨要更加优异,在0.2 A/g电流密度下,比电容可达到221.32 F/g,在功率密度为456.32 W/kg下,能量密度可达83.51 (W·h)/kg。
中图分类号:
魏颖, 陶明松, 朱耀锋, 张庆国. GNs/[Bmim][BF4]复合材料的制备及其超电容性能[J]. 化工学报, 2020, 71(1): 417-425.
Ying WEI, Mingsong TAO, Yaofeng ZHU, Qingguo ZHANG. Preparation of GNs/[Bmim][BF4] composites and their supercapacitive properties[J]. CIESC Journal, 2020, 71(1): 417-425.
图9 石墨和GNs/[Bmim][BF4]复合物在电流密度为0.2 A/g时的恒流充放电图
Fig.9 Constant current charge and discharge diagram for graphite and GNs/[Bmim][BF4] composite at a current density of 0.2 A/g
电极材料 | 能量密度/((W·h)/kg) | 功率密度/(W/kg) | 比电容/(F/g) | 体积比电容/ (F/cm3) | 面积比电容/ (F/cm2) | 充放电效率(5000次)/% |
---|---|---|---|---|---|---|
石墨 | 54.72 | 332.54 | 154.63 | 33.62 | 21.85 | 95.63 |
GNs/[Bmim][BF4] | 83.51 | 456.32 | 221.32 | 48.12 | 31.28 | 98.91 |
表1 石墨和GNs/[Bmim][BF4]复合材料电化学数据对比
Table 1 Comparison of electrochemical data between graphite and GNs/[Bmim][BF4] composites
电极材料 | 能量密度/((W·h)/kg) | 功率密度/(W/kg) | 比电容/(F/g) | 体积比电容/ (F/cm3) | 面积比电容/ (F/cm2) | 充放电效率(5000次)/% |
---|---|---|---|---|---|---|
石墨 | 54.72 | 332.54 | 154.63 | 33.62 | 21.85 | 95.63 |
GNs/[Bmim][BF4] | 83.51 | 456.32 | 221.32 | 48.12 | 31.28 | 98.91 |
1 | Wang G, Brown W, Kvent M. Structure and dynamics of electrical double layer in nanoscale systems[J]. Current Opinion in Electrochemistry, 2018, 13: 112-118. |
2 | Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854. |
3 | Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950. |
4 | 刘喜龙. 有机系超级电容用活性炭性能的研究以及大容量超级电容器的开发[D].长春: 吉林大学, 2017. |
Liu X L. Study on the performance of activated carbon for organic supercapacitors and the development of large-capacity supercapacitors[D]. Changchun: Jilin University, 2017. | |
5 | Osti N C, Gallegos A, Dyatkin B, et al. Mixed ionic liquid improves electrolyte dynamics in supercapacitors[J]. The Journal of Physical Chemistry C, 2018, 122(19): 10476-10481. |
6 | Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. |
7 | Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 80-84. |
8 | Lin J, Huang Y, Huang P. Graphene-Based Nanomaterials in Bioimaging[M]//Biomedical Applications of Functionalized Nanomaterials. Dutch: Elsevier, 2018: 247-287. |
9 | Down M P, Banks C E. Freestanding three-dimensional graphene macroporous supercapacitor[J]. ACS Applied Energy Materials, 2018, 1(2): 891-899. |
10 | Welton T. Ionic liquids: a brief history[J]. Biophysical Reviews, 2018, 10(3): 691-706. |
11 | Liu N, Luo F, Wu H, et al. One‐step ionic‐liquid‐assisted electrochemical synthesis of ionic‐liquid‐functionalized graphene sheets directly from graphite[J]. Advanced Functional Materials, 2008, 18(10): 1518-1525. |
12 | Wei D, Grande L, Chundi V, et al. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices[J]. Chemical Communications, 2012, 48(9): 1239-1241. |
13 | 卢南, 黄华, 程兴, 等. 1-丁基-3-甲基咪唑四氟硼酸盐离子液体的合成与表征[J]. 应用化工, 2013, 42(5): 885-887. |
Lu N, Huang H, Cheng X, et al. Synthesis and characterization of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid[J]. Applied Chemical, 2013, 42(5): 885-887. | |
14 | 魏颖, 张学磊, 张鑫源, 等. 三氟乙酸离子液体/四氟硼酸螺环季铵盐混合电解液的超级电容性质研究[J]. 电子元件与材料, 2016, 35(6): 35-39. |
Wei Y, Zhang X L, Zhang X Y, et al. Study on supercapacitance properties of trifluoroacetic acid ionic liquid/tetrafluoroboric acid spirocyclic quaternary ammonium salt mixed electrolyte[J]. Electronic Components & Materials, 2016, 35(6): 35-39. | |
15 | 朱计划, 杨倩韵, 刘芝婷, 等. 四氟硼酸螺环季铵盐的合成及其超级电容性能[J]. 储能科学与技术, 2018, 7(2): 294-300. |
Zhu J H, Yang Q Y, Liu Z T, et al. Synthesis and supercapacitive properties of tetrafluoroboric acid spirocyclic quaternary ammonium salts[J]. Energy Storage Science and Technology, 2018, 7(2): 294-300. | |
16 | Wang G, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets[J]. The Journal of Physical Chemistry C, 2008, 112(22): 8192-8195. |
17 | Singh V V, Gupta G, Batra A, et al. Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application[J]. Advanced Functional Materials, 2012, 22(11): 2352-2362. |
18 | Georgakilas V, Tiwari J N, Kemp K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9): 5464-5519. |
19 | Blees M K, Barnard A W, Rose P A, et al. Graphene kirigami[J]. Nature, 2015, 524(7564): 204-207. |
20 | 吴洪鹏. 石墨烯的制备及在超级电容器中的应用[D]. 北京: 北京交通大学, 2012. |
Wu H P. Preparation of graphene and its application in supercapacitors[D]. Beijing: Beijing Jiaotong University, 2012. | |
21 | Li C, Xu Y T, Zhao B, et al. Flexible graphene electrothermal films made from electrochemically exfoliated graphite[J]. Journal of Materials Science, 2016, 51(2): 1043-1051. |
22 | Abdelkader A M, Kinloch I A, Dryfe R A W. Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1632-1639. |
23 | Yang Y, Hou H, Zou G, et al. Electrochemical exfoliation of graphene-like two-dimensional nanomaterials[J]. Nanoscale, 2019, 11(1): 16-33. |
24 | Luo Z, Yu T, Ni Z, et al. Electronic structures and structural evolution of hydrogenated graphene probed by Raman spectroscopy[J]. The Journal of Physical Chemistry C, 2011, 115(5): 1422-1427. |
25 | Gupta A K, Tang Y, Crespi V H, et al. Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene[J]. Physical Review B, 2010, 82(24): 241406. |
26 | Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters, 2008, 8(1): 36-41. |
27 | Li L, Wang M, Cao M, et al. Regulation of radicals from electrochemical exfoliation for production of graphene and its electrochemical properties[J]. Electrochimica Acta, 2017, 258: 1484-1492. |
28 | 孟繁慧. 基于新型纳米结构超级电容器材料的研究[D].济南: 山东大学, 2013. |
Meng F H. Research based on novel nanostructured supercapacitor materials[D]. Jinan: Shandong University, 2013. | |
29 | Chia J S Y, Tan M T T, Khiew P S, et al. A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical sensing application[J]. Chemical Engineering Journal, 2014, 249: 270-278. |
30 | Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401. |
31 | Cooper A J, Wilson N R, Kinloch I A, et al. Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations[J]. Carbon, 2014, 66: 340-350. |
32 | Ke Q, Wang J. Graphene-based materials for supercapacitor electrodes—a review[J]. Journal of Materiomics, 2016, 2(1): 37-54. |
33 | 孙谊. 碳基超级电容器单体性能相关理论与应用技术研究[D]. 北京: 北京交通大学, 2013. |
Sun Y. Research on theory and application technology of carbon-based supercapacitor monomer performance[D]. Beijing: Beijing Jiaotong University, 2013. | |
34 | Tang H, Wang J, Yin H, et al. Growth of polypyrrole ultrathin films on MoS2 monolayers as high‐performance supercapacitor electrodes[J]. Advanced Materials, 2015, 27(6): 1117-1123. |
35 | Qu G, Cheng J, Li X, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode[J]. Advanced Materials, 2016, 28(19): 3646-3652. |
36 | 高丽丽. 超级电容器用聚丙烯腈基活性碳纤维的直接活化制备及性能研究[D]. 长春: 吉林大学, 2014. |
Gao L L. Direct activation preparation and properties of polyacrylonitrile-based activated carbon fibers for supercapacitors[D]. Changchun: Jilin University, 2014. | |
37 | Guan C, Liu X, Ren W, et al. Rational design of metal‐organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis[J]. Advanced Energy Materials, 2017, 7(12): 1602391. |
38 | 张诚. 基于复合纳米材料的超级电容器的设计、制备和电化学性能研究[D]. 南京: 南京大学, 2018. |
Zhang C. Design, preparation and electrochemical properties of supercapacitors based on composite nanomaterials[D]. Nanjing: Nanjing University, 2018. | |
39 | 卢骋. 超级电容器用分级孔径碳材料的制备及性能[D]. 杭州: 浙江大学, 2018. |
Lu C. Preparation and properties of graded pore carbon materials for supercapacitors[D]. Hangzhou: Zhejiang University, 2018. | |
40 | Chen G Z. Supercapacitor and supercapattery as emerging electrochemical energy stores[J]. International Materials Reviews, 2017, 62(4): 173-202. |
41 | 赵翠梅. 高性能电极材料及新型非对称超级电容器的研究[D]. 长春: 吉林大学, 2014. |
Zhao C M. Research on high performance electrode materials and new asymmetric supercapacitors[D]. Changchun: Jilin University, 2014. | |
42 | Zhu M, Huang Y, Deng Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene[J]. Advanced Energy Materials, 2016, 6(21): 1600969. |
43 | Elwakil A S, Allagui A, Maundy B J, et al. A low frequency oscillator using a super-capacitor[J]. AEU-International Journal of Electronics and Communications, 2016, 70(7): 970-973. |
44 | Raymundo‐Piñero E, Leroux F, Béguin F. A high‐performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer[J]. Advanced Materials, 2006, 18(14): 1877-1882. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[6] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[7] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[8] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[9] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[10] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[11] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[12] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[13] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[14] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[15] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 491
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 563
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||