化工学报 ›› 2020, Vol. 71 ›› Issue (5): 2118-2127.DOI: 10.11949/0438-1157.20191403
收稿日期:
2019-11-20
修回日期:
2019-12-27
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
项曙光
作者简介:
刘广杰(1994—),男,硕士研究生, 基金资助:
Guangjie LIU1(),Xiaoyan SUN1,Rongshan BI1,Jianping WANG2,Shuguang XIANG1()
Received:
2019-11-20
Revised:
2019-12-27
Online:
2020-05-05
Published:
2020-05-05
Contact:
Shuguang XIANG
摘要:
在内外层算法的基础上,采用联立方程思想将主塔、侧线汽提塔视为一个整体进行建模,并针对复杂炼油塔的特点对算法提出了改进。首先,由于传统内外层法简化的K值模型对组成的变化不敏感,在处理带有石油的体系时,容易出现迭代次数较多,甚至部分塔板温度更新异常的问题,因此采用了汽相分数加和式推导了简化的K值模型加权因子。其次,借鉴流量加和法思想,规定侧线汽提塔的塔底产品流量作为设计变量,增强了算法收敛的稳定性。为验证改进后算法的有效性,采用不同的算法对实际的常压塔进行了模拟,结果显示改进后的算法适合应用于复杂炼油塔的模拟计算。
中图分类号:
刘广杰, 孙晓岩, 毕荣山, 王建平, 项曙光. 复杂炼油塔模拟的改进联立方程内外层算法[J]. 化工学报, 2020, 71(5): 2118-2127.
Guangjie LIU, Xiaoyan SUN, Rongshan BI, Jianping WANG, Shuguang XIANG. Improved equation oriented inside-out method of complex crude distillation column simulation[J]. CIESC Journal, 2020, 71(5): 2118-2127.
Number | Component | Mass flow/ (kg·h-1) | Number | Component | Mass flow/ (kg·h-1) |
---|---|---|---|---|---|
1 | water | 233.3 | 8 | C2H6 | 136.2 |
2 | O2 | 6.4 | 9 | C3H8 | 200.8 |
3 | N2 | 21.2 | 10 | IC4 | 86.3 |
4 | H2S | 2.1 | 11 | NC4 | 104.2 |
5 | CO2 | 29.9 | 12 | C5 | 41.6 |
6 | H2 | 6.2 | 13 | crude | 499209 |
7 | CH4 | 198.1 |
表1 初馏塔进料流股组成
Table 1 Feed composition of preflash tower
Number | Component | Mass flow/ (kg·h-1) | Number | Component | Mass flow/ (kg·h-1) |
---|---|---|---|---|---|
1 | water | 233.3 | 8 | C2H6 | 136.2 |
2 | O2 | 6.4 | 9 | C3H8 | 200.8 |
3 | N2 | 21.2 | 10 | IC4 | 86.3 |
4 | H2S | 2.1 | 11 | NC4 | 104.2 |
5 | CO2 | 29.9 | 12 | C5 | 41.6 |
6 | H2 | 6.2 | 13 | crude | 499209 |
7 | CH4 | 198.1 |
Percent distillate/% | Temperature/℃ |
---|---|
0 | 16.47 |
5 | 92.3 |
10 | 134.1 |
30 | 262.81 |
50 | 374.07 |
70 | 479.99 |
90 | 695.61 |
95 | 806.3 |
100 | 945.75 |
表2 Crude TBP蒸馏数据(液相体积基准,d15.6/15.6重度为0.8523)
Table 2 TBP distillation data of crude (liquid volume reference, d15.6/15.6 gravity is 0.8523)
Percent distillate/% | Temperature/℃ |
---|---|
0 | 16.47 |
5 | 92.3 |
10 | 134.1 |
30 | 262.81 |
50 | 374.07 |
70 | 479.99 |
90 | 695.61 |
95 | 806.3 |
100 | 945.75 |
Item | Draw stage | Return stage | Flow rate/(kg·h-1) | Return temperature/℃ |
---|---|---|---|---|
pumparound P-1 | 4 | 2 | 163133.1 | 72.2 |
pumparound P-2 | 16 | 14 | 133779.9 | 185 |
pumparound P-3 | 26 | 24 | 160271.6 | 182 |
表3 中段回流输入参数
Table 3 Input parameters of pumparounds
Item | Draw stage | Return stage | Flow rate/(kg·h-1) | Return temperature/℃ |
---|---|---|---|---|
pumparound P-1 | 4 | 2 | 163133.1 | 72.2 |
pumparound P-2 | 16 | 14 | 133779.9 | 185 |
pumparound P-3 | 26 | 24 | 160271.6 | 182 |
Item | Number of stages | Liquid draw stage | Vapor return stage | Bottom product/(kg·h-1) | Stripping steam |
---|---|---|---|---|---|
stripper S-1 | 6 | 13 | 11 | 37741.4 | 385℃,0.35 MPa,425 kg·h-1 |
stripper S-2 | 6 | 38 | 36 | 14853.2 | 385℃,0.35 MPa,168 kg·h-1 |
表4 汽提塔输入参数
Table 4 Input parameters of strippers
Item | Number of stages | Liquid draw stage | Vapor return stage | Bottom product/(kg·h-1) | Stripping steam |
---|---|---|---|---|---|
stripper S-1 | 6 | 13 | 11 | 37741.4 | 385℃,0.35 MPa,425 kg·h-1 |
stripper S-2 | 6 | 38 | 36 | 14853.2 | 385℃,0.35 MPa,168 kg·h-1 |
Stage number | IIOM | IOM | Relaxation-SR | ||||||
---|---|---|---|---|---|---|---|---|---|
Temperature/℃ | Liquid flow/(kmol·h-1) | Vapor flow /(kmol·h-1) | Temperature/℃ | Liquid flow/(kmol·h-1) | Vapor flow /(kmol·h-1) | Temperature/℃ | Liquid flow/(kmol·h-1) | Vapor flow /(kmol·h-1) | |
1 | 121.0 | 2066.7 | 800.9 | 121.0 | 2066.7 | 800.9 | 121.4 | 2049.0 | 812.0 |
5 | 158.4 | 995.1 | 1620.6 | 158.4 | 995.1 | 1620.6 | 158.1 | 975.4 | 1616.2 |
10 | 181.8 | 1005.6 | 1526.8 | 181.8 | 1005.6 | 1526.8 | 181.5 | 985.8 | 1513.6 |
15 | 203.5 | 1549.3 | 1484.7 | 203.5 | 1549.3 | 1484.7 | 206.2 | 1520.3 | 1464.1 |
20 | 229.4 | 686.1 | 1410.5 | 229.4 | 686.1 | 1410.5 | 229.4 | 661.1 | 1396.3 |
25 | 275.1 | 1402.6 | 1689.2 | 275.1 | 1402.6 | 1689.2 | 275.8 | 1380.2 | 1673.4 |
30 | 308.0 | 631.2 | 1680.0 | 308.0 | 631.2 | 1680.0 | 308.9 | 627.6 | 1668.6 |
35 | 325.2 | 386.1 | 1530.0 | 325.2 | 386.1 | 1530.0 | 326.5 | 371.8 | 1515.3 |
40 | 345.1 | 590.0 | 291.0 | 345.1 | 590.0 | 291.0 | 344.6 | 581.6 | 287.3 |
41 | 189.8 | 253.8 | 73.9 | 189.8 | 253.8 | 73.9 | 188.9 | 254.3 | 75.2 |
46 | 174.3 | 214.3 | 41.0 | 174.3 | 214.3 | 41.0 | 173.8 | 215.0 | 40.7 |
47 | 335.1 | 50.0 | 20.2 | 335.1 | 50.0 | 20.2 | 335.1 | 48.0 | 21.1 |
53 | 326.4 | 41.1 | 13.0 | 326.4 | 41.1 | 13.0 | 326.1 | 40.3 | 12.8 |
表5 不同算法部分塔板结果对比
Table 5 Comparison of partial stages result calculated by different algorithms
Stage number | IIOM | IOM | Relaxation-SR | ||||||
---|---|---|---|---|---|---|---|---|---|
Temperature/℃ | Liquid flow/(kmol·h-1) | Vapor flow /(kmol·h-1) | Temperature/℃ | Liquid flow/(kmol·h-1) | Vapor flow /(kmol·h-1) | Temperature/℃ | Liquid flow/(kmol·h-1) | Vapor flow /(kmol·h-1) | |
1 | 121.0 | 2066.7 | 800.9 | 121.0 | 2066.7 | 800.9 | 121.4 | 2049.0 | 812.0 |
5 | 158.4 | 995.1 | 1620.6 | 158.4 | 995.1 | 1620.6 | 158.1 | 975.4 | 1616.2 |
10 | 181.8 | 1005.6 | 1526.8 | 181.8 | 1005.6 | 1526.8 | 181.5 | 985.8 | 1513.6 |
15 | 203.5 | 1549.3 | 1484.7 | 203.5 | 1549.3 | 1484.7 | 206.2 | 1520.3 | 1464.1 |
20 | 229.4 | 686.1 | 1410.5 | 229.4 | 686.1 | 1410.5 | 229.4 | 661.1 | 1396.3 |
25 | 275.1 | 1402.6 | 1689.2 | 275.1 | 1402.6 | 1689.2 | 275.8 | 1380.2 | 1673.4 |
30 | 308.0 | 631.2 | 1680.0 | 308.0 | 631.2 | 1680.0 | 308.9 | 627.6 | 1668.6 |
35 | 325.2 | 386.1 | 1530.0 | 325.2 | 386.1 | 1530.0 | 326.5 | 371.8 | 1515.3 |
40 | 345.1 | 590.0 | 291.0 | 345.1 | 590.0 | 291.0 | 344.6 | 581.6 | 287.3 |
41 | 189.8 | 253.8 | 73.9 | 189.8 | 253.8 | 73.9 | 188.9 | 254.3 | 75.2 |
46 | 174.3 | 214.3 | 41.0 | 174.3 | 214.3 | 41.0 | 173.8 | 215.0 | 40.7 |
47 | 335.1 | 50.0 | 20.2 | 335.1 | 50.0 | 20.2 | 335.1 | 48.0 | 21.1 |
53 | 326.4 | 41.1 | 13.0 | 326.4 | 41.1 | 13.0 | 326.1 | 40.3 | 12.8 |
Item | IIOM | IOM(Russell) | Relaxation(main tower)-SR(strippers) |
---|---|---|---|
condenser | partial vapor liquid,water distillate | partial vapor liquid,water distillate | no condenser |
number of component | 52 | 52 | 52 |
iterates | outer loop iterated 6 times, while inner loop iterated 13.83 times | outer loop iterated 36 times, while inner loop iterated 22.4 times | main tower iterated 83 times, stripper iterated 4 times,tear streams(Wegstein) iterated 7 times |
iterative time/s | 62.2 | 243.4 | 486.1 |
表6 常压塔不同算法迭代次数、迭代时间对比
Table 6 Comparison of different method iterating results for atmospheric tower
Item | IIOM | IOM(Russell) | Relaxation(main tower)-SR(strippers) |
---|---|---|---|
condenser | partial vapor liquid,water distillate | partial vapor liquid,water distillate | no condenser |
number of component | 52 | 52 | 52 |
iterates | outer loop iterated 6 times, while inner loop iterated 13.83 times | outer loop iterated 36 times, while inner loop iterated 22.4 times | main tower iterated 83 times, stripper iterated 4 times,tear streams(Wegstein) iterated 7 times |
iterative time/s | 62.2 | 243.4 | 486.1 |
Item | Temperature of top tower/℃ | Temperature of bottom tower/℃ | Distillate of bottom tower/(kg·h-1) |
---|---|---|---|
IIOM | 121 | 345.1 | 288641.8 |
Measured | 122.6 | 346.8 | 287976.6 |
δ/% | -1.31 | -0.49 | 0.23 |
表7 模拟结果对比
Table 7 Comparison of simulation results
Item | Temperature of top tower/℃ | Temperature of bottom tower/℃ | Distillate of bottom tower/(kg·h-1) |
---|---|---|---|
IIOM | 121 | 345.1 | 288641.8 |
Measured | 122.6 | 346.8 | 287976.6 |
δ/% | -1.31 | -0.49 | 0.23 |
Component | Top tower product composition | Component | Top tower product composition | ||||
---|---|---|---|---|---|---|---|
IIOM | Measured | δ/% | IIOM | Measured | δ/% | ||
water | 0.03625 | 0.03674 | -1.33 | C2H6 | 0.03017 | 0.02989 | 0.94 |
O2 | 0.00050 | 0.00050 | 0.00 | C2H4 | 0.00582 | 0.00581 | 0.17 |
N2 | 0.00138 | 0.00141 | -2.13 | C3H8 | 0.03868 | 0.03752 | 3.09 |
H2S | 0.00129 | 0.00127 | 1.57 | C3H6 | 0.00059 | 0.00057 | 3.51 |
CO2 | 0.02113 | 0.02111 | 0.09 | IC4 | 0.00831 | 0.00836 | -0.60 |
H2 | 0.00166 | 0.00172 | -3.49 | NC4 | 0.01060 | 0.01059 | 0.09 |
CH4 | 0.40942 | 0.41787 | -2.02 | C5 | 0.00090 | 0.00089 | 1.12 |
表8 塔顶常规组分对比(质量基准)
Table 8 Comparison of conventional components on the top of the tower(mass basis)
Component | Top tower product composition | Component | Top tower product composition | ||||
---|---|---|---|---|---|---|---|
IIOM | Measured | δ/% | IIOM | Measured | δ/% | ||
water | 0.03625 | 0.03674 | -1.33 | C2H6 | 0.03017 | 0.02989 | 0.94 |
O2 | 0.00050 | 0.00050 | 0.00 | C2H4 | 0.00582 | 0.00581 | 0.17 |
N2 | 0.00138 | 0.00141 | -2.13 | C3H8 | 0.03868 | 0.03752 | 3.09 |
H2S | 0.00129 | 0.00127 | 1.57 | C3H6 | 0.00059 | 0.00057 | 3.51 |
CO2 | 0.02113 | 0.02111 | 0.09 | IC4 | 0.00831 | 0.00836 | -0.60 |
H2 | 0.00166 | 0.00172 | -3.49 | NC4 | 0.01060 | 0.01059 | 0.09 |
CH4 | 0.40942 | 0.41787 | -2.02 | C5 | 0.00090 | 0.00089 | 1.12 |
1 | 黄小侨, 张宛丽, 单越, 等 . 原油蒸馏装置及其换热网络的协同优化[J]. 中国石油大学学报(自然科学版), 2019, 43(1): 162-168. |
Huang X Q , Zhang W L , Shan Y , et al . Collaborative optimization of a crude oil distillation system and coupled heat exchanger network[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(1): 162-168. | |
2 | Jones D S J . Atmospheric and Vacuum Crude Distillation Units in Petroleum Refineries[M]. New York: Springer International Publishing, 2015: 21-24. |
3 | Dhaval J D , Murtuza Z D , Satydev S V K , et al . Online tuning of a steady state crude distillation unit model for real time applications[J]. Journal of Process Control, 2003, 13(3): 267-282. |
4 | 任海伦, 安登超, 朱桃月, 等 . 精馏技术研究进展与工业应用[J]. 化工进展, 2016, 35(6): 1606-1626. |
Ren H L , An D C , Zhu T Y , et al . Research progress and industrial application of distillation technology[J]. Chem. Ind. Eng. Prog., 2016, 35(6): 1606-1626. | |
5 | Thiele E W , Geddes R L . Computation of distillation apparatus for hydrocarbon mixtures[J]. Ind. Eng. Chem., 1932, 25: 289-295. |
6 | 齐永君, 翁惠新 . 催化精馏过程模拟稳态模型的研究进展[J]. 化工进展, 2010, 29(4): 600-605. |
Qi Y J , Weng H X . Progress in steady-state models for simulation of catalytic distillation process[J]. Chem. Ind. Eng. Prog., 2010, 29(4): 600-605. | |
7 | Rosendo M L . Simulation of multicomponent multistage vapor-liquid separations, an improved algorithm using the Wang-Henke tridiagonal matrix method[J]. Ind. Eng. Chem. Res., 2003, 42(1): 175-182. |
8 | 吴燕翔, 邱挺, 王良恩, 等 . 三对角与二对角矩阵法应用于非理想溶液精馏计算的收敛性[J]. 化工学报, 1999, 50(1): 70-79. |
Wu Y X , Qiu T , Wang L E , et al . Convergence and stability of tridiagonal and bidiagonal matrix methods for non-ideal solution distillation [J]. Journal of Chemical Industry and Engineering(China), 1999, 50(1): 70-79. | |
9 | Friday J R , Smith B D . An analysis of the equilibrium stage separations problem-formulation and convergence[J]. AIChE J., 1964, 10(5): 689-707. |
10 | Arthur R , Robert F S , Verle N S . Continuous distillation calculations by relaxation method[J]. Industrial and Engineering Chemistry, 1958, 50(5): 737-740. |
11 | 盖旭东, 汪展文, 金涌 . 催化精馏塔通用数学模型及其求解方法[J]. 化工学报, 1998, 49(5): 542-548. |
Ge X D , Wang Z W , Jin Y . General Mathematical model and its solution for catalytic distillation columns[J]. Journal of Chemical Industry and Engineering(China), 1998, 49(5): 542-548. | |
12 | 史贤林, 韩方煜, 王纯, 等 . 内校正2N牛顿-拉甫逊法与新松弛法结合用于多级多组分分离过程的计算[J]. 化学工程, 1990, 18(1): 51-69. |
Shi X L , Han F Y , Wang C , et al . The inside correction 2N Newton-Raphson method combine with the new relaxation method for the calculations of separation process with multistage and multicomponent[J]. Chemical Engineering(China), 1990, 18(1): 51-69. | |
13 | Boston J F , Sullivan S L . A new class of solution methods for multicomponent, multistage separation processes[J]. Chemical Engineering Journal, 1974, 52: 51-63. |
14 | Li C S , Zhang X P , Zhang S J , et al . Simulation of multi-component multi-stage separation process —an improved algorithm and application[J]. The Chinese Journal of Process Engineering, 2006, 6(2): 247-254. |
15 | Shashwat B , Sampatrao D M . Theoretical investigation on the performance of multicomponent distillation column for the separation of hydrocarbon mixture using inside out approach[J]. International Journal of Chemical Engineering and Applications, 2015, 7(4): 282-288. |
16 | Russell R A . A flexible and reliable method solves single-tower and crude distillation column problems[J]. Chemical Engineering Journal, 1983, 90(20): 53-59. |
17 | 陈志奎 . 原油蒸馏过程的数学模型和各类软件(Ⅲ)[J]. 计算机与应用化学, 1999, 16(2): 125-131. |
Chen Z K . Model and various software of cured oil distillation process(Ⅲ)[J]. Computers and Applied Chemistry, 1999, 16(2): 125-131. | |
18 | 陆恩锡, 张慧娟, 尹清华 . 化工过程模拟及相关高新技术(Ⅰ)化工过程稳态模拟[J]. 化工进展, 1999, (4): 63-65. |
Lu E X , Zhang H J , Yin Q H . Chemical process simulation and related high and new technology (Ⅰ): Steady state simulation of chemical process[J]. Chem. Ind. Eng. Prog., 1999, (4): 63-65. | |
19 | 骞伟中, 汪展文, 魏飞, 等 . 乙烯和苯催化精馏合成乙苯过程非平衡级模拟[J]. 化工学报, 2001, 52(10): 853-857. |
Qian W Z , Wang Z W , Wei F , et al . Nonequilibrium stage modeling of catalytic distillation for ethylbenzene synthesis [J]. Journal of Chemical Industry and Engineering(China), 2001, 52(10): 853-857. | |
20 | Hofeling B S , Seader J D . A modified Naphtali-Sandholm method for general systems of interlinked, multistaged separators[J]. AIChE J., 1978, 24(6): 1131-1134. |
21 | Lang P . Modeling of a crude distillation column[J]. Computers & Chemical Engineering, 1991, 15(2): 133-139. |
22 | 马英, 孙晓岩, 项曙光 . 精馏过程稳态模拟计算方法的研究进展[J]. 应用化工, 2016, 45(12): 2326-2331. |
Ma Y , Sun X Y , Xiang S G . The research progress of steady-state distillation process simulation calculation methods[J]. Applied Chemical Industry, 2016, 45(12): 2326-2331. | |
23 | 赵秀红, 季江宁, 刘昆元 . 碳三催化精馏加氢模拟计算[J]. 化学工程, 2004, 32(1): 56-59. |
Zhao X H , Ji J J , Liu K Y . Modeling computation of C3 catalytic distillation hydrogenation[J]. Chem. Eng., 1990, 18(1): 51-69. | |
24 | Jelinek J . The calculation of multistage equilibrium separation problems with various specifications[J]. Computers & Chemical Engineering, 1988, 12(2/3): 195-198. |
25 | Boston J F , Britt H I . A radically different for mulation and solution of the single-stage flash problem, compute[J]. Chemical Engineering Journal, 1978, (2): 109-122. |
26 | Boston J F . Inside-out algorithms for multicomponent separation process calculations[J]. J. Am. Chem. Soc., 1980, (6): 135-151. |
27 | Ganesh M , Anuj A , Pappa N . Estimation of variation in vapor liquid equilibrium constants for modeling a multicomponent crude distillation column[J]. IFAC PapersOnLine, 2016, 49(13): 199-204. |
28 | 陈荃韡, 龚成明, 赵晋泉, 等 . 并行稀疏系统直接求解库SuperLU_MT在状态估计中的应用[J]. 电力系统自动化, 2017, 41(3): 83-88. |
Chen K W , Gong C M , Zhao J Q , et al . Application of parallel sparse system direct solver library SuperLU_MT in state estimation[J]. Automation of Electric Power System, 2017, 41(3): 83-88. | |
29 | 程华农, 毕荣山, 杨霞, 等 . 减压装置的优化和节能改造[J]. 化工进展, 2009, 28(5): 755-763. |
Cheng H N , Bi R S , Yang X , et al . Optimization and energy conservation retrofit of atmospheric and vacuum unit[J]. Chem. Ind. Eng. Prog. 2009, 28(5): 755-763. | |
30 | Yu Y , Paul I B . Refinery optimization integrated with a nonlinear crude distillation unit model[J]. IFAC Papers OnLine, 2015, 48(8): 205-210. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[5] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[6] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[7] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[8] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[9] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[10] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[11] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[12] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[13] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[14] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[15] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||