化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3752-3760.DOI: 10.11949/0438-1157.20200148
收稿日期:
2020-02-17
修回日期:
2020-04-11
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
张兰河
作者简介:
贾艳萍(1973—),女,博士,教授,基金资助:
Yanping JIA1(),Zhen ZHANG1,Zewei TONG2,Wei WANG1,Lanhe ZHANG1()
Received:
2020-02-17
Revised:
2020-04-11
Online:
2020-08-05
Published:
2020-08-05
Contact:
Lanhe ZHANG
摘要:
印染废水的成分复杂、色度高、毒性强,通过分析E.coli(大肠杆菌)的形态、抗氧化酶和生物标志物,研究铁碳微电解工艺处理前后印染废水生物毒性的变化。结果表明:E.coli在进水中呈破碎状态,而在铁碳微电解工艺出水中的E.coli大部分为正常形态;与进水的抗氧化酶系统相比,出水组中的丙二醛(MDA)、谷胱甘肽(GSH)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和总抗氧化能力(T-AOC)分别降低了80.85%、53.73%、67.74%、44.90%和43.38%,铁碳微电解工艺处理后的印染废水E.coli的抗氧化能力接近正常水平。进水和出水的葡萄糖消耗量抑制率分别为85%和47%;与进水的生物标志物相比,出水中热值升高21.95%,内源荧光蛋白升高112.96%,核酸含量降低44.04%。铁碳微电解工艺具有降低实际印染废水生物毒性的作用。
中图分类号:
贾艳萍, 张真, 佟泽为, 王嵬, 张兰河. 利用E.coli评价铁碳微电解处理印染废水的生物毒性变化[J]. 化工学报, 2020, 71(8): 3752-3760.
Yanping JIA, Zhen ZHANG, Zewei TONG, Wei WANG, Lanhe ZHANG. Evaluation of biotoxicity of iron-carbon micro-electrolysis treatment of printing and dyeing wastewater by E.coli[J]. CIESC Journal, 2020, 71(8): 3752-3760.
组别 | 颜色 | COD/(mg/L) | TOC/(mg/L) | NH4+-N/(mg/L) | 浊度/NTU | 色度/倍 | BOD5/COD | pH | 味道 |
---|---|---|---|---|---|---|---|---|---|
进水组 | 鲜红 | 1288.0±100.0 | 108.0±10.0 | 10.90±4.00 | 112±3 | 345±15 | 0.151 | 4.6±1.0 | 刺激性酸臭味 |
出水组 | 无色 | 315.8±80.0 | 20.5±7.0 | 0.88±0.50 | 14±2 | 85±10 | 0.327 | 9.0±0.5 | 无 |
表1 进、出水组的水质指标
Table 1 Water quality index of influent and effluent
组别 | 颜色 | COD/(mg/L) | TOC/(mg/L) | NH4+-N/(mg/L) | 浊度/NTU | 色度/倍 | BOD5/COD | pH | 味道 |
---|---|---|---|---|---|---|---|---|---|
进水组 | 鲜红 | 1288.0±100.0 | 108.0±10.0 | 10.90±4.00 | 112±3 | 345±15 | 0.151 | 4.6±1.0 | 刺激性酸臭味 |
出水组 | 无色 | 315.8±80.0 | 20.5±7.0 | 0.88±0.50 | 14±2 | 85±10 | 0.327 | 9.0±0.5 | 无 |
图4 E.coli存活率和罗丹明123染色荧光光谱E.coli细胞膜的内外电势存在跨膜电位,罗丹明123作为阳离子亲脂性荧光染料可透过细胞膜,与细胞内膜特异性结合。罗丹明123的最大发射波长为525 nm,因此通过荧光光谱及525 nm处的荧光强度反映细胞膜电位的变化。罗丹明123染色荧光光谱如图4(b)所示。由图4(b)可知,对照组、出水组及进水组的最大荧光强度为103、249、445,且进水组中荧光强度最高,其原因是废水中污染物与细胞表面接触,发生反应使细胞膜受损或使细胞代谢紊乱死亡,细胞内容物流出,导致膜电位较高,这与万嫦玉[28]的研究结论相似,其研究结果表明:实验组较对照组的细胞膜电位有较大提升,其原因是细胞膜受损,溶出的Zn2+进入细胞,导致细胞膜电位上升。
Fig.4 E.coli survival rate and rhodamine 123 staining fluorescence spectrum
1 | 游东辉, 程治良, 李敢, 等. 新型酞菁催化剂的制备及降解染料性能[J]. 化工学报, 2018, 69(12): 5090-5099. |
You D H, Cheng Z L, Li G, et al. Preparation and catalytic degradation property research of novel phthalocyanine[J]. CIESC Journal, 2018, 69(12): 5090-5099. | |
2 | 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. |
Ren N Q, Zhou X J, Guo W Q, et al. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84-94. | |
3 | 王建坤, 郭晶, 张昊, 等. 阳离子淀粉染料吸附材料的制备及表征[J]. 化工学报, 2017, 68(5): 2112-2121. |
Wang J K, Guo J, Zhang H, et al. Synthesis and characterization of cationic starch dye adsorbing material[J]. CIESC Journal, 2017, 68(5): 2112-2121. | |
4 | Bae W, Han D, Kim E, et al. Enhanced bioremoval of refractory compounds from dyeing wastewater using optimized sequential anaerobic/aerobic process[J]. International Journal of Environmental Science and Technology, 2016, 13(7): 1675-1684. |
5 | 张锐, 李敏, 周天旭, 等. 新型温敏超滤膜处理印染废水的研究[J]. 化工学报, 2018, 69(11): 4910-4917. |
Zhang R, Li M, Zhou T X, et al. Treatment of printing and dyeing wastewater with novel temperature-responsive ultrafiltration membrane[J]. CIESC Journal, 2018, 69(11): 4910-4917. | |
6 | Akshaya K V, Rajesh R D, Puspendu B. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters[J]. Journal of Environmental Management, 2012, 93(1): 154-168. |
7 | Wang L Q, Yang Q, Wang D B, et al. Advanced landfill leachate treatment using iron-carbon microelectrolysis-Fenton process: process optimization and column experiments[J]. Journal of Hazardous Materials, 2016, 318: 460-467. |
8 | Ma W W, Han Y H, Xu C Y, et al. The mechanism of synergistic effect between iron-carbon microelectrolysis and biodegradation for strengthening phenols removal in coal gasification wastewater treatment[J]. Bioresource Technology, 2019, 271: 84-90. |
9 | Wang B, Tian K, Xiong X, et al. Treatment of overhaul wastewater containing N-methyldiethanolamine (MDEA) through modified Fe-C microelectrolysis-configured ozonation: investigation on process optimization and degradation mechanisms[J]. Journal of Hazardous Materials, 2019, 369: 655-664. |
10 | Han Y H, Qi M M, Zhang L, et al. Degradation of nitrobenzene by synchronistic oxidation and reduction in an internal circulation microelectrolysis reactor[J]. Journal of Hazardous Materials, 2019, 365: 448-456. |
11 | 俸志荣, 焦纬洲, 刘有智, 等. 铁碳微电解处理含硝基苯废水[J]. 化工学报, 2015, 66(3): 1150-1155. |
Feng Z R, Jiao W Z, Liu Y Z, et al. Treatment of nitrobenzene-containing wastewater by iron-carbon micro-electrolysis[J]. CIESC Journal, 2015, 66(3): 1150-1155. | |
12 | 王毅博, 冯民权, 刘永红, 等. 铁碳微电解技术在难治理废水中的研究进展[J]. 化工进展, 2018, 37(8): 3188-3196. |
Wang Y B, Feng M Q, Liu Y H, et al. Recent advances on iron-carbon micro-electrolysis technology for refractory wastewater[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3188-3196. | |
13 | Edison G P, Santiago C S. Optimization of the heterogeneous electro-Fenton process assisted by scrap zero-valent iron for treating textile wastewater: assessment of toxicity and biodegradability[J]. Journal of Water Process Engineering, 2019, 32: 100924-100936. |
14 | Xingu-Contreras E, García-Rosales G, Cabral-Prieto A, et al. Degradation of methyl orange using iron boride nanoparticles supported in a natural zeolite[J]. Environmental Nanotechnology Monitoring and Management, 2017, 7: 121-129. |
15 | 王悦. 铁碳微电解系统的性能及优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. |
Wang Y. Research and optimization of performance of iron-carbon microelectrolysis[D]. Harbin: Harbin Engineering University, 2017. | |
16 | 张禾. 铁碳微电解联合H2O2深度处理印染废水[D]. 上海: 东华大学, 2015. |
Zhang H. Advanced treatment of printing and dyeing wastewater by iron-carbon micro-electrolysis combined with H2O2[D]. Shanghai: Donghua University, 2015. | |
17 | 贾艳萍, 张真, 毕朕豪, 等. 铁碳微电解处理印染废水的效能及生物毒性变化[J]. 化工进展, 2020, 39(2): 790-797. |
Jia Y P, Zhang Z, Bi Z H, et al. Efficiency and biological toxicity of iron-carbon microelectrolysis in the treatment of dyeing wastewater[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 790-797. | |
18 | 景欣悦, 康维钧, 张宏伟. 环境污染物的生物测试方法[J]. 环境卫生学杂志, 2005, 32(3): 167-170. |
Jing X Y, Kang W J, Zhang H W, et al. Biological test methods for environmental pollutants[J]. Journal of Environmental Hygiene, 2005, 32(3): 167-170. | |
19 | Wang D, Zhao L, Ma M. Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: the role of superoxide radicals[J]. Environmental Science and Technology, 2017, 51(17): 10137-10145. |
20 | 贾艳萍, 张真, 佟泽为, 等. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801. |
Jia Y P, Zhang Z, Tong Z W, et al. Study on the efficiency and mechanism of iron-carbon microelectrolysis treatment of dyeing wastewater[J]. CIESC Journal, 2020, 71(4): 1791-1801. | |
21 | 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002: 210-286. |
State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Methods[M]. Beijing: China Environmental Science Press, 2002: 210-286. | |
22 | 葛钼. 纳米氧化锌对大肠杆菌的致毒机理及生物膜对其毒性的影响[D]. 南京: 南京大学, 2013. |
Ge M. Toxicity mechanism of ZnO nanoparticles to Escherichia coli and the influence of biofilms[D]. Nanjing: Nanjing University, 2013. | |
23 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 微束分析扫描电镜能谱仪定量分析参数的测定方法: GB/T 25189—2010[S]. 北京: 中国标准出版社, 2011. |
Peoples Republic of China General Administration of Quality Supervision, Inspection and Quarantine, China National Standardization Administration. Quantitative analysis parameters of microbeam analysis scanning electron microscope spectrometer: GB/T 25189—2010[S]. Beijing: China Standard Press, 2011. | |
24 | 王学. 零价纳米铁对微生物的毒理研究[D]. 天津: 南开大学, 2012. |
Wang X. Toxicological study of zero valence nanometer iron on microbes[D]. Tianjin: Nankai University, 2012. | |
25 | 张丽丽. 丙烯腈生物膜毒性致损机制的研究[D]. 苏州: 苏州大学, 2009. |
Zhang L L. Study on mechanism of membrane toxicity induced by acrylonitrile[D]. Suzhou: Soochow University, 2009. | |
26 | 陶祥运. 城市污泥重金属的钝化及微生物毒性评价[D]. 合肥: 安徽农业大学, 2018. |
Tao X Y. Evaluation of passivation and microbial toxicity of heavy metals in municipal sludge[D]. Hefei: Anhui Agricultural University, 2018. | |
27 | 方婷婷. CdTe量子点及几种常见污染物毒性的微量热研究[D]. 武汉: 武汉理工大学, 2013. |
Fang T T. The microcalorimetric study on the toxicity of CdTe QDs and several pollutants[D]. Wuhan: Wuhan University of Technology, 2013. | |
28 | 万嫦玉. 生纳米氧化锌对大肠杆菌生物效应的研究[D]. 武汉: 华中农业大学, 2016. |
Wan C Y. The biological effect of nano ZnO to Escherichia coli[D]. Wuhan: Huazhong Agricultural University, 2016. | |
29 | Reguera G, Mccarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101. |
30 | Ranade S S, Tatake V G, Korgaonkar K S. Effects of ultrasonic radiation in Escherichia coli by using fluorochrome acridine orange as a vital stain[J]. Nature, 1961, 189(4768): 931-932. |
31 | 黄霞云, 杨锦荣, 刘晶杰. 吖啶橙标记大肠杆菌的用量问题[J]. 广东医学院学报, 2005, 23(6): 692. |
Huang X Y, Yang J R, Liu J J. Amount of acridine orange labeled E.coli[J]. Journal of Guangdong Medical University, 2005, 23(6): 692. | |
32 | 吴东海. 臭氧/光催化高效生物灭活及在船舶压载水处理中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
Wu D H. Efficient inactivation of microorganisms by photocatalytic ozonation process and its application for ballast water treatment[D]. Harbin: Harbin Institute of Technology, 2011. | |
33 | Lu S C. Glutathione synthesis [J]. Biochimica Et Biophysica Acta, 2013, 1830(5): 3143-3153. |
34 | 王世红. 抗氧化剂对铜绿假单胞菌致病性的影响[D]. 西安: 西北大学, 2015. |
Wang S H. The effect of antioxidant on Pseudomonas aeruginosa pathogenic[D]. Xi􀆳an: Northwest University, 2015. | |
35 | 杜佳暄. 臭氧/光催化法灭活压载水中微生物的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
Du J X. Research on biological inactivation of ballast water with UV/O3/Ag-TiO2 system[D]. Harbin: Harbin Institute of Technology, 2010. | |
36 | 刘淼. 纤维素纳米晶体对大肠杆菌生物毒性的影响研究[D]. 沈阳: 沈阳农业大学, 2017. |
Liu M. Biological toxicity of cellulose nanocrystals against E. coli[D]. Shenyang: Shenyang Agricultural University, 2017. | |
37 | 靳爱洁. 含吡啶酮类药物污染物饮用水氯化消毒前后水质生物毒性变化研究[D]. 北京: 北京林业大学, 2016. |
Jin A J. Changes of the toxic potential of drinking water containing pyrazolone drugs before and after chlorine disinfection[D]. Beijing: Beijing Forestry University, 2016. | |
38 | 吕昕璐. 溢油分散剂处理船用燃料油对发光细菌和黄海胆的复合毒性效应研究[D]. 大连: 大连海事大学, 2014. |
Lv X L. Study on combined toxic effect of dispersant and fuel oil to luminescent bacteria and glyptocidatris crehularis[D]. Dalian: Dalian Maritime University, 2014. | |
39 | 王潇, 于颖琪, 郑洁莹, 等. 14MeV快中子辐照对大鼠免疫系统的损伤[J]. 北京理工大学学报, 2016, 36(7): 765-770. |
Wang X, Yu Y Q, Zheng J Y, et al. Radiation damage to rat immune system induced by 14MeV fast neutrons[J]. Transactions of Beijing Institute of Technology, 2016, 36(7): 765-770. | |
40 | 王涛. 十溴二苯醚和Cd复合污染对蚯蚓抗氧化酶活性的影响研究[D]. 泰安: 山东农业大学, 2013. |
Wang T. Study on impacts of compound pollution of BDE-209 and Cd to antioxidiant enzyme activity of earthworms[D]. Tai􀆳an: Shandong Agricultural University, 2013. | |
41 | 张晶. 溢油及表面活性剂成分对刺参幼参的毒理效应研究[D]. 上海: 上海海洋大学, 2014. |
Zhang J. Toxicology effect of oil spill and surfactant composition on juvenile sea cucumber[D]. Shanghai: Shanghai Ocean University, 2014. | |
42 | 安红丽. 原花青素纳米乳的研制[D]. 咸阳: 西北农林科技大学, 2007. |
An H L. Preparation on proanthocyanidins nanoemulsion[D]. Xianyang: Northwest Agricuture and Forest Science and Technology University, 2007. | |
43 | Mi Y Z, Tao X Y, Zhang X, et al. Acute biotoxicity assessment of heavy metals in sewage sludge based on the glucose consumption of Escherichia coli[J]. Royal Society Open Science, 2019, 6(1): 181769-181777. |
44 | Prescott L M, Harley J P, Klein D A. Microbiology[M]. McGraw-Hill, 2002. |
45 | Banerjee A, Basu K, Sengupta P K. Interaction of 7-hydroxyflavone with human serum albumin: a spectroscopic study[J]. Journal of Photochemistry and Photobiology B: Biology, 2008, 90(1): 33-40. |
46 | 张腾, 冯娟, 李阳, 等. 二硫键的氧化还原状态对Trx融合赤霉酸诱导富含半胱氨酸蛋白内源荧光及变性过程影响[J]. 光谱学与光谱分析, 2010, 30(2): 395-400. |
Zhang T, Feng J, Li Y, et al. Effects of redox state of disulfide bonds on the intrinsic fluorescence and denaturation of Trx-fused gibberellin-induced cysteine-rich protein from Gymnadnia conopsea[J]. Spectroscopy and Spectral Analysis, 2010, 30(2): 395-400. | |
47 | Fang D Y, Tao X Y, Zhang X, et al. Adaptive use of a personal glucose meter (PGM) for acute biotoxicity assessment based on the glucose consumption of microbes[J]. Analyst, 2016, 141(10): 3004-3011. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[5] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[6] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[7] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[8] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[9] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[10] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[11] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[12] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[13] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[14] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[15] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||