化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5725-5734.DOI: 10.11949/0438-1157.20200232
林纬1,2(),王众浩1,2,汪威1,2(
),喻九阳1,2,郑小涛1,2,徐建民1,2,王成刚1,2,马琳伟1,2
收稿日期:
2020-03-04
修回日期:
2020-07-30
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
汪威
作者简介:
林纬(1987—),男,博士,副教授,基金资助:
LIN Wei1,2(),WANG Zhonghao1,2,WANG Wei1,2(
),YU Jiuyang1,2,ZHENG Xiaotao1,2,XU Jianmin1,2,WANG Chenggang1,2,MA Linwei1,2
Received:
2020-03-04
Revised:
2020-07-30
Online:
2020-12-05
Published:
2020-12-05
Contact:
WANG Wei
摘要:
采用正交实验法研究了多因素对电化学软化水特性的影响,定量分析了电化学水软化特性影响因素的作用机制,得到了电化学水软化的最优组合方案。选取了5个因素5个水平,进行正交实验,实验次数由55减少至25;实验结果表明,硬度是影响实验效果最显著的因素,脉冲电源实验组与直流电源实验组中软化水效果的最优组合方案分别为A3B2C1D4E3、A2B5C3D1。10 V电压下,单位能耗成垢离子去除量随间距的增大先增大后减小,在间距为125 mm时达到最大。当电压超过10 V时,使用高频电源可以提高单位能耗成垢离子去除量、降低能耗。降低电压是提高单位能耗成垢离子去除量的重要途径。研究结果可为电化学水软化特性的结构优化和参数控制,以及电化学软水装置电源的选择提供依据。
中图分类号:
林纬,王众浩,汪威,喻九阳,郑小涛,徐建民,王成刚,马琳伟. 基于正交实验的电化学法水软化特性分析[J]. 化工学报, 2020, 71(12): 5725-5734.
LIN Wei,WANG Zhonghao,WANG Wei,YU Jiuyang,ZHENG Xiaotao,XU Jianmin,WANG Chenggang,MA Linwei. Analysis of water softening characteristics of electrochemical method based on orthogonal experiment[J]. CIESC Journal, 2020, 71(12): 5725-5734.
水平 | 因素 | |||
---|---|---|---|---|
电压/V | 硬度/(mg/L) | 极板间距/mm | 停留时间/h | |
Case1 | 7 | 400 | 120 | 6 |
Case2 | 14 | 600 | 90 | 3 |
Case3 | 21 | 800 | 60 | 2 |
Case4 | 28 | 1000 | 30 | 1.5 |
表1 预实验因素与水平
Table 1 Pre-experimental factors and levels
水平 | 因素 | |||
---|---|---|---|---|
电压/V | 硬度/(mg/L) | 极板间距/mm | 停留时间/h | |
Case1 | 7 | 400 | 120 | 6 |
Case2 | 14 | 600 | 90 | 3 |
Case3 | 21 | 800 | 60 | 2 |
Case4 | 28 | 1000 | 30 | 1.5 |
组别 | 溶液硬度/(mg/L) | |
---|---|---|
配制溶液 | 静置后溶液 | |
Case1 | 400 | 296.65 |
Case2 | 600 | 489.3 |
Case3 | 800 | 701.25 |
Case4 | 1000 | 1015 |
表2 静置组实验结果
Table 2 Experimental results of the standing group
组别 | 溶液硬度/(mg/L) | |
---|---|---|
配制溶液 | 静置后溶液 | |
Case1 | 400 | 296.65 |
Case2 | 600 | 489.3 |
Case3 | 800 | 701.25 |
Case4 | 1000 | 1015 |
组别 | 因素 | ||||
---|---|---|---|---|---|
电压/V | 间距/mm | 硬度/ (mg/L) | 停留 时间/h | 除垢量/ (mg/L) | |
1 | 7 | 120 | 400 | 6 | 879.5 |
2 | 7 | 90 | 600 | 3 | 1177 |
3 | 7 | 60 | 800 | 2 | 1539 |
4 | 7 | 30 | 1000 | 1.5 | 2340 |
5 | 14 | 120 | 600 | 2 | 2160 |
6 | 14 | 90 | 400 | 1.5 | 2390 |
7 | 14 | 60 | 1000 | 6 | 2122 |
8 | 14 | 30 | 800 | 3 | 2583 |
9 | 21 | 120 | 800 | 1.5 | 9500 |
10 | 21 | 90 | 1000 | 2 | 8241 |
11 | 21 | 60 | 400 | 3 | 1474 |
12 | 21 | 30 | 600 | 6 | 1421 |
13 | 28 | 120 | 1000 | 3 | 7751 |
14 | 28 | 90 | 800 | 6 | 3883 |
15 | 28 | 60 | 600 | 1.5 | 4784 |
16 | 28 | 30 | 400 | 2 | 2476.5 |
均值1 | 1483.875 | 5072.625 | 1805 | 2076.375 | 54721 |
均值2 | 2313.75 | 3922.75 | 2385.5 | 3246.25 | |
均值3 | 5159 | 2479.75 | 4376.25 | 3604.125 | |
均值4 | 4723.625 | 2205.125 | 5113.5 | 4753.5 | |
极差R | 3675.125 | 2867.5 | 3308.5 | 2677.125 |
表3 预实验结果
Table 3 Pre-experimental results
组别 | 因素 | ||||
---|---|---|---|---|---|
电压/V | 间距/mm | 硬度/ (mg/L) | 停留 时间/h | 除垢量/ (mg/L) | |
1 | 7 | 120 | 400 | 6 | 879.5 |
2 | 7 | 90 | 600 | 3 | 1177 |
3 | 7 | 60 | 800 | 2 | 1539 |
4 | 7 | 30 | 1000 | 1.5 | 2340 |
5 | 14 | 120 | 600 | 2 | 2160 |
6 | 14 | 90 | 400 | 1.5 | 2390 |
7 | 14 | 60 | 1000 | 6 | 2122 |
8 | 14 | 30 | 800 | 3 | 2583 |
9 | 21 | 120 | 800 | 1.5 | 9500 |
10 | 21 | 90 | 1000 | 2 | 8241 |
11 | 21 | 60 | 400 | 3 | 1474 |
12 | 21 | 30 | 600 | 6 | 1421 |
13 | 28 | 120 | 1000 | 3 | 7751 |
14 | 28 | 90 | 800 | 6 | 3883 |
15 | 28 | 60 | 600 | 1.5 | 4784 |
16 | 28 | 30 | 400 | 2 | 2476.5 |
均值1 | 1483.875 | 5072.625 | 1805 | 2076.375 | 54721 |
均值2 | 2313.75 | 3922.75 | 2385.5 | 3246.25 | |
均值3 | 5159 | 2479.75 | 4376.25 | 3604.125 | |
均值4 | 4723.625 | 2205.125 | 5113.5 | 4753.5 | |
极差R | 3675.125 | 2867.5 | 3308.5 | 2677.125 |
水平 | 因素 | ||||
---|---|---|---|---|---|
硬度(A)/ (mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | 频率(E)/kHz | |
Case1 | 600 | 10 | 钛板 | 50 | 2 |
Case2 | 700 | 15 | 钛网1 | 75 | 4 |
Case3 | 800 | 20 | 钛网2 | 100 | 6 |
Case4 | 900 | 25 | 钛网3 | 125 | 8 |
Case5 | 1000 | 30 | 钛网4 | 150 | 10 |
表4 高频组因素与水平
Table 4 HF group factors and levels
水平 | 因素 | ||||
---|---|---|---|---|---|
硬度(A)/ (mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | 频率(E)/kHz | |
Case1 | 600 | 10 | 钛板 | 50 | 2 |
Case2 | 700 | 15 | 钛网1 | 75 | 4 |
Case3 | 800 | 20 | 钛网2 | 100 | 6 |
Case4 | 900 | 25 | 钛网3 | 125 | 8 |
Case5 | 1000 | 30 | 钛网4 | 150 | 10 |
水平 | 因素 | |||
---|---|---|---|---|
硬度(A)/ (mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | |
Case1 | 600 | 10 | 钛板 | 50 |
Case2 | 700 | 15 | 钛网1 | 75 |
Case3 | 800 | 20 | 钛网2 | 100 |
Case4 | 900 | 25 | 钛网3 | 125 |
Case5 | 1000 | 30 | 钛网4 | 150 |
表5 直流组因素与水平
Table 5 DC group factors and levels
水平 | 因素 | |||
---|---|---|---|---|
硬度(A)/ (mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | |
Case1 | 600 | 10 | 钛板 | 50 |
Case2 | 700 | 15 | 钛网1 | 75 |
Case3 | 800 | 20 | 钛网2 | 100 |
Case4 | 900 | 25 | 钛网3 | 125 |
Case5 | 1000 | 30 | 钛网4 | 150 |
组别 | 因素 | 硬度/(mg/L) | 硬度去除率/% | ||||
---|---|---|---|---|---|---|---|
硬度(A)/(mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | 频率(E)/kHz | |||
1 | 600 | 10 | 钛板 | 50 | 2 | 160.79 | 73.20 |
2 | 600 | 15 | 3×6钛网 | 75 | 4 | 160.14 | 73.31 |
3 | 600 | 20 | 4.5×6钛网 | 100 | 6 | 104.17 | 82.64 |
4 | 600 | 25 | 6×9钛网 | 125 | 8 | 113.25 | 81.13 |
5 | 600 | 30 | 6×12钛网 | 150 | 10 | 139.32 | 76.78 |
6 | 700 | 10 | 4.5×6钛网 | 75 | 8 | 166.19 | 76.26 |
7 | 700 | 15 | 6×9钛网 | 100 | 10 | 148.03 | 78.85 |
8 | 700 | 20 | 6×12钛网 | 125 | 2 | 146.79 | 79.03 |
9 | 700 | 25 | 钛板 | 150 | 4 | 197.95 | 71.72 |
10 | 700 | 30 | 3×6钛网 | 50 | 6 | 56.33 | 91.95 |
11 | 800 | 10 | 6×12钛网 | 100 | 4 | 203.84 | 74.52 |
12 | 800 | 15 | 钛板 | 125 | 6 | 21.99 | 97.25 |
13 | 800 | 20 | 3×6钛网 | 150 | 8 | 183.02 | 77.12 |
14 | 800 | 25 | 4.5×6钛网 | 50 | 10 | 56.18 | 92.98 |
15 | 800 | 30 | 6×9钛网 | 75 | 2 | 111.14 | 86.11 |
16 | 900 | 10 | 3×6钛网 | 125 | 10 | 277.78 | 69.14 |
17 | 900 | 15 | 4.5×6钛网 | 150 | 2 | 99.23 | 88.97 |
18 | 900 | 20 | 6×9钛网 | 50 | 4 | 99.02 | 89.00 |
19 | 900 | 25 | 6×12钛网 | 75 | 6 | 88.76 | 90.14 |
20 | 900 | 30 | 钛板 | 100 | 8 | 152.45 | 83.06 |
21 | 1000 | 10 | 6×9钛网 | 150 | 6 | 296.3 | 70.37 |
22 | 1000 | 15 | 6×12钛网 | 50 | 8 | 201.22 | 79.88 |
23 | 1000 | 20 | 钛板 | 75 | 10 | 170.38 | 82.96 |
24 | 1000 | 25 | 3×6钛网 | 100 | 2 | 163.32 | 83.67 |
25 | 1000 | 30 | 4.5×6钛网 | 125 | 4 | 71.04 | 92.90 |
表6 高频组正交实验结果
Table 6 Orthogonal experiment results of HF group
组别 | 因素 | 硬度/(mg/L) | 硬度去除率/% | ||||
---|---|---|---|---|---|---|---|
硬度(A)/(mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | 频率(E)/kHz | |||
1 | 600 | 10 | 钛板 | 50 | 2 | 160.79 | 73.20 |
2 | 600 | 15 | 3×6钛网 | 75 | 4 | 160.14 | 73.31 |
3 | 600 | 20 | 4.5×6钛网 | 100 | 6 | 104.17 | 82.64 |
4 | 600 | 25 | 6×9钛网 | 125 | 8 | 113.25 | 81.13 |
5 | 600 | 30 | 6×12钛网 | 150 | 10 | 139.32 | 76.78 |
6 | 700 | 10 | 4.5×6钛网 | 75 | 8 | 166.19 | 76.26 |
7 | 700 | 15 | 6×9钛网 | 100 | 10 | 148.03 | 78.85 |
8 | 700 | 20 | 6×12钛网 | 125 | 2 | 146.79 | 79.03 |
9 | 700 | 25 | 钛板 | 150 | 4 | 197.95 | 71.72 |
10 | 700 | 30 | 3×6钛网 | 50 | 6 | 56.33 | 91.95 |
11 | 800 | 10 | 6×12钛网 | 100 | 4 | 203.84 | 74.52 |
12 | 800 | 15 | 钛板 | 125 | 6 | 21.99 | 97.25 |
13 | 800 | 20 | 3×6钛网 | 150 | 8 | 183.02 | 77.12 |
14 | 800 | 25 | 4.5×6钛网 | 50 | 10 | 56.18 | 92.98 |
15 | 800 | 30 | 6×9钛网 | 75 | 2 | 111.14 | 86.11 |
16 | 900 | 10 | 3×6钛网 | 125 | 10 | 277.78 | 69.14 |
17 | 900 | 15 | 4.5×6钛网 | 150 | 2 | 99.23 | 88.97 |
18 | 900 | 20 | 6×9钛网 | 50 | 4 | 99.02 | 89.00 |
19 | 900 | 25 | 6×12钛网 | 75 | 6 | 88.76 | 90.14 |
20 | 900 | 30 | 钛板 | 100 | 8 | 152.45 | 83.06 |
21 | 1000 | 10 | 6×9钛网 | 150 | 6 | 296.3 | 70.37 |
22 | 1000 | 15 | 6×12钛网 | 50 | 8 | 201.22 | 79.88 |
23 | 1000 | 20 | 钛板 | 75 | 10 | 170.38 | 82.96 |
24 | 1000 | 25 | 3×6钛网 | 100 | 2 | 163.32 | 83.67 |
25 | 1000 | 30 | 4.5×6钛网 | 125 | 4 | 71.04 | 92.90 |
组别 | 因素 | 硬度/(mg/L) | 硬度去除率/% | |||
---|---|---|---|---|---|---|
硬度(A)/(mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | |||
1 | 600 | 10 | 钛板 | 50 | 212.4 | 64.60 |
2 | 600 | 15 | 3×6钛网 | 75 | 218.52 | 63.58 |
3 | 600 | 20 | 4.5×6钛网 | 100 | 218.08 | 63.65 |
4 | 600 | 25 | 6×9钛网 | 125 | 212.27 | 64.62 |
5 | 600 | 30 | 6×12钛网 | 150 | 206.28 | 65.62 |
6 | 700 | 10 | 4.5×6钛网 | 75 | 189.72 | 72.90 |
7 | 700 | 15 | 6×9钛网 | 100 | 187.68 | 73.19 |
8 | 700 | 20 | 6×12钛网 | 125 | 68.27 | 90.25 |
9 | 700 | 25 | 钛板 | 150 | 68.41 | 90.23 |
10 | 700 | 30 | 3×6钛网 | 50 | 15.8 | 97.74 |
11 | 800 | 10 | 6×12钛网 | 100 | 36.57 | 95.43 |
12 | 800 | 15 | 钛板 | 125 | 111.33 | 86.08 |
13 | 800 | 20 | 3×6钛网 | 150 | 69.07 | 91.37 |
14 | 800 | 25 | 4.5×6钛网 | 50 | 203.71 | 74.54 |
15 | 800 | 30 | 6×9钛网 | 75 | 22.68 | 97.17 |
16 | 900 | 10 | 3×6钛网 | 125 | 175.35 | 80.52 |
17 | 900 | 15 | 4.5×6钛网 | 150 | 100.87 | 88.79 |
18 | 900 | 20 | 6×9钛网 | 50 | 37.57 | 95.83 |
19 | 900 | 25 | 6×12钛网 | 75 | 31.61 | 96.49 |
20 | 900 | 30 | 钛板 | 100 | 122.42 | 86.40 |
21 | 1000 | 10 | 6×9钛网 | 150 | 140.13 | 85.99 |
22 | 1000 | 15 | 6×12钛网 | 50 | 32.76 | 96.72 |
23 | 1000 | 20 | 钛板 | 75 | 62.8 | 93.72 |
24 | 1000 | 25 | 3×6钛网 | 100 | 29.26 | 97.07 |
25 | 1000 | 30 | 4.5×6钛网 | 125 | 54.17 | 94.58 |
表7 直流组正交实验结果
Table 7 Orthogonal experiment results of DC group
组别 | 因素 | 硬度/(mg/L) | 硬度去除率/% | |||
---|---|---|---|---|---|---|
硬度(A)/(mg/L) | 电压(B)/V | 极板(C) | 间距(D)/mm | |||
1 | 600 | 10 | 钛板 | 50 | 212.4 | 64.60 |
2 | 600 | 15 | 3×6钛网 | 75 | 218.52 | 63.58 |
3 | 600 | 20 | 4.5×6钛网 | 100 | 218.08 | 63.65 |
4 | 600 | 25 | 6×9钛网 | 125 | 212.27 | 64.62 |
5 | 600 | 30 | 6×12钛网 | 150 | 206.28 | 65.62 |
6 | 700 | 10 | 4.5×6钛网 | 75 | 189.72 | 72.90 |
7 | 700 | 15 | 6×9钛网 | 100 | 187.68 | 73.19 |
8 | 700 | 20 | 6×12钛网 | 125 | 68.27 | 90.25 |
9 | 700 | 25 | 钛板 | 150 | 68.41 | 90.23 |
10 | 700 | 30 | 3×6钛网 | 50 | 15.8 | 97.74 |
11 | 800 | 10 | 6×12钛网 | 100 | 36.57 | 95.43 |
12 | 800 | 15 | 钛板 | 125 | 111.33 | 86.08 |
13 | 800 | 20 | 3×6钛网 | 150 | 69.07 | 91.37 |
14 | 800 | 25 | 4.5×6钛网 | 50 | 203.71 | 74.54 |
15 | 800 | 30 | 6×9钛网 | 75 | 22.68 | 97.17 |
16 | 900 | 10 | 3×6钛网 | 125 | 175.35 | 80.52 |
17 | 900 | 15 | 4.5×6钛网 | 150 | 100.87 | 88.79 |
18 | 900 | 20 | 6×9钛网 | 50 | 37.57 | 95.83 |
19 | 900 | 25 | 6×12钛网 | 75 | 31.61 | 96.49 |
20 | 900 | 30 | 钛板 | 100 | 122.42 | 86.40 |
21 | 1000 | 10 | 6×9钛网 | 150 | 140.13 | 85.99 |
22 | 1000 | 15 | 6×12钛网 | 50 | 32.76 | 96.72 |
23 | 1000 | 20 | 钛板 | 75 | 62.8 | 93.72 |
24 | 1000 | 25 | 3×6钛网 | 100 | 29.26 | 97.07 |
25 | 1000 | 30 | 4.5×6钛网 | 125 | 54.17 | 94.58 |
指标 | 因素 | |||
---|---|---|---|---|
硬度(A) | 电压(B) | 间距(C) | 极板(D) | |
K1 | 386.490 | 649.166 | 699.552 | 684.528 |
K2 | 594.024 | 669.816 | 694.982 | 698.448 |
K3 | 711.328 | 702.682 | 675.038 | 640.530 |
K4 | 806.436 | 687.298 | 672.072 | 676.284 |
K5 | 936.176 | 708.026 | 675.344 | 717.198 |
极差R | 549.686 | 66.564 | 23.830 | 78.212 |
表8 直流电源极差分析
Table 8 DC power range analysis
指标 | 因素 | |||
---|---|---|---|---|
硬度(A) | 电压(B) | 间距(C) | 极板(D) | |
K1 | 386.490 | 649.166 | 699.552 | 684.528 |
K2 | 594.024 | 669.816 | 694.982 | 698.448 |
K3 | 711.328 | 702.682 | 675.038 | 640.530 |
K4 | 806.436 | 687.298 | 672.072 | 676.284 |
K5 | 936.176 | 708.026 | 675.344 | 717.198 |
极差R | 549.686 | 66.564 | 23.830 | 78.212 |
指标 | 因素 | ||||
---|---|---|---|---|---|
硬度(A) | 电压(B) | 间距(C) | 极板(D) | 频率(E) | |
K1 | 464.466 | 579.020 | 683.492 | 659.288 | 663.746 |
K2 | 556.942 | 672.078 | 660.678 | 631.882 | 653.602 |
K3 | 684.766 | 659.324 | 645.638 | 700.638 | 686.490 |
K4 | 756.552 | 676.108 | 673.830 | 646.452 | 634.974 |
K5 | 817.748 | 693.944 | 616.836 | 642.214 | 641.662 |
极差R | 353.282 | 114.924 | 66.656 | 68.756 | 51.516 |
表9 高频电源极差分析
Table 9 HF power range analysis
指标 | 因素 | ||||
---|---|---|---|---|---|
硬度(A) | 电压(B) | 间距(C) | 极板(D) | 频率(E) | |
K1 | 464.466 | 579.020 | 683.492 | 659.288 | 663.746 |
K2 | 556.942 | 672.078 | 660.678 | 631.882 | 653.602 |
K3 | 684.766 | 659.324 | 645.638 | 700.638 | 686.490 |
K4 | 756.552 | 676.108 | 673.830 | 646.452 | 634.974 |
K5 | 817.748 | 693.944 | 616.836 | 642.214 | 641.662 |
极差R | 353.282 | 114.924 | 66.656 | 68.756 | 51.516 |
因素 | 指标 | ||||
---|---|---|---|---|---|
离差平方和 | 自由度 | F比 | F临界值 | 显著性 | |
硬度(A) | 945909.949 | 4 | 35.071 | F0.01=16.000 | * |
电压(B) | 13194.854 | 4 | 0.489 | F0.05=6.390 | |
间距(C) | 2704.561 | 4 | 0.100 | F0.05=6.390 | |
极板(D) | 16311.919 | 4 | 0.999 | F0.05=6.390 |
表10 直流电源方差分析
Table 10 DC power variance analysis
因素 | 指标 | ||||
---|---|---|---|---|---|
离差平方和 | 自由度 | F比 | F临界值 | 显著性 | |
硬度(A) | 945909.949 | 4 | 35.071 | F0.01=16.000 | * |
电压(B) | 13194.854 | 4 | 0.489 | F0.05=6.390 | |
间距(C) | 2704.561 | 4 | 0.100 | F0.05=6.390 | |
极板(D) | 16311.919 | 4 | 0.999 | F0.05=6.390 |
因素 | 指标 | ||||
---|---|---|---|---|---|
离差平方和 | 自由度 | F比 | F临界值 | 显著性 | |
硬度(A) | 417991.593 | 4 | 13.855 | F0.01=16.000 | * |
电压(B) | 40197.527 | 4 | 1.332 | F0.05=6.390 | — |
间距(C) | 13683.738 | 4 | 0.454 | F0.05=6.390 | |
极板(D) | 14331.065 | 4 | 0.475 | F0.05=6.390 | |
频率(E) | 8215.085 | 4 | 0.272 | F0.05=6.390 |
表11 高频电源方差分析
Table 11 HF power variance analysis
因素 | 指标 | ||||
---|---|---|---|---|---|
离差平方和 | 自由度 | F比 | F临界值 | 显著性 | |
硬度(A) | 417991.593 | 4 | 13.855 | F0.01=16.000 | * |
电压(B) | 40197.527 | 4 | 1.332 | F0.05=6.390 | — |
间距(C) | 13683.738 | 4 | 0.454 | F0.05=6.390 | |
极板(D) | 14331.065 | 4 | 0.475 | F0.05=6.390 | |
频率(E) | 8215.085 | 4 | 0.272 | F0.05=6.390 |
1 | Wu Y, Zhao H, Zhang C, et al. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test[J]. Energy, 2018, 151: 79-93. |
2 | Yu Y, Jin H, Meng P, et al. Electrochemical water softening using air-scoured washing for scale detachment[J]. Separation and Purification Technology, 2018, 191: 216-224. |
3 | Zarga Y , Ben Boubaker H B, Ghaffour N , et al. Study of calcium carbonate and sulfate co-precipitation[J]. Chemical Engineering Science, 2013, 96(Complete): 33-41. |
4 | Nebot E, Casanueva J F, Casanueva T, et al. In situ experimental study for the optimization of chlorine dosage in seawater cooling systems[J]. Applied Thermal Engineering, 2006, 26(16): 1893-1900. |
5 | Zhi S , Zhang S . A novel combined electrochemical system for hardness removal[J]. Desalination, 2014, 349: 68-72. |
6 | Zeppenfeld K. Electrochemical removal of calcium and magnesium ions from aqueous solutions[J]. Desalination, 2011, 277(1/2/3): 99-105. |
7 | Brastad K S, He Z. Water softening using microbial desalination cell technology[J]. Desalination, 2013, 309: 32-37. |
8 | Janssen L J J, Koene L. The role of electrochemistry and electrochemical technology in environmental protection[J]. Chemical Engineering Journal, 2002, 85(2/3): 137-146. |
9 | Hu J, Fang Z, Jiang X, et al. Membrane-free electrodeionization using strong-type resins for high purity water production[J]. Separation and Purification Technology, 2015, 144: 90-96. |
10 | Shen X, Li T, Jiang X, et al. Desalination of water with high conductivity using membrane-free electrodeionization[J]. Separation and Purification Technology, 2014, 128: 39-44. |
11 | Rukapan W, Khananthai B, Chiemchaisri C, et al. Short- and long-term fouling characteristics of reverse osmosis membrane at full scale leachate treatment plant[J]. Water Science and Technology, 2012, 65(1): 127-134. |
12 | Hasson D, Sidorenko G, Semiat R. Calcium carbonate hardness removal by a novel electrochemical seeds system[J]. Desalination, 2010, 263(1/2/3): 285-289. |
13 | Gabrielli C, Maurin G, Perrot H, et al. Investigation of electrochemical calcareous scaling: potentiostatic current-and mass-time transients[J]. Journal of Electroanalytical Chemistry, 2002, 538: 133-143. |
14 | Hasson D, Lumelsky V, Greenberg G, et al. Development of the electrochemical scale removal technique for desalination applications[J]. Desalination, 2008, 230(1/2/3): 329-342. |
15 | Mat M D, Aldas K, Ilegbusi O J. A two-phase flow model for hydrogen evolution in an electrochemical cell[J]. International Journal of Hydrogen Energy, 2004, 29(10): 1015-1023. |
16 | Hasson D, Sidorenko G, Semiat R. Low electrode area electrochemical scale removal system[J]. Desalination and Water Treatment, 2011, 31(1/2/3): 35-41. |
17 | Zhang G, Qiu Y, Yang X, et al. Electrolytic treatment of industrial circulating cooling water using titanium–ruthenium–iridium anode and stainless steel cathode[J]. Desalination and Water Treatment, 2015, 56(4): 905-911. |
18 | 曾敏, 徐文彬, 陈涵毅, 等.方波脉冲低压阻垢技术的试验研究[J]. 广东化工, 2006, 33(1): 39-41. |
Zeng M, Xu W B, Chen H Y, et al. Study on the square-wave low-voltaged pulse anti-scaling technology[J]. Guangdong Chemical Industry, 2006, 33(1): 39-41. | |
19 | 林美强, 宋卫锋, 朱又春, 等. 三角波脉冲低压阻垢技术的试验研究[J]. 清洗世界, 2004, 20(2): 1-6. |
Lin M Q, Song W F, Zhu Y C, et al. Study on the triangular-wave low-voltaged pulse anti-scaling technology[J]. Cleaning World, 2004, 20(2): 1-6. | |
20 | 宋卫锋, 朱又春, 肖云开, 等. 低压脉冲阻垢技术的试验研究[J]. 工业水处理, 2003, 23(5): 21-23. |
Song W F, Zhu Y C, Xiao Y K, et al.Study on the low-voltaged impulse anti-scaling technology[J]. Industrial Water Treatment, 2003, 23(5): 21-23. | |
21 | Wu Y, Zhao H, Zhang C, et al. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test[J]. Energy, 2018, 151: 79-93. |
22 | Yu Y, Jin H, Jin X, et al. Current pulsated electrochemical precipitation for water softening[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6585-6593. |
23 | Wang B H, Jin Y, Luo Y G. Parametric optimization of EQ6110HEV hybrid electric bus based on orthogonal experiment design[J]. International Journal of Automotive Technology, 2010, 11(1): 119-125. |
24 | Zhong W, Deng Y, Machado J A T, et al. Strength prediction of similar materials to ionic rare earth ores based on orthogonal test and back propagation neural network[J]. Soft Computing, 2019, 23(19): 9429-9437. |
25 | Zaslavschi I, Shemer H, Hasson D, et al. Electrochemical CaCO3 scale removal with a bipolar membrane system[J]. Journal of Membrane Science, 2013, 445: 88-95. |
26 | Gabrielli C, Maurin G, Francy-Chausson H, et al. Electrochemical water softening: principle and application[J]. Desalination, 2006, 201(1/2/3): 150-163. |
27 | 延卫, 徐浩, 汤成莉. 水系统的积垢及其物理控制技术[J]. 净水技术, 2008, (3): 12-16. |
Yan W, Xu H, Tang C L, et al. Scale and its physical prevention in water systems[J]. Water Purification Technology, 2008, (3): 12-16. | |
28 | 王庆慧, 袁帅, 卫园梦, 等. 基于交互正交实验的玉米淀粉粉尘云最低着火温度的影响因素研究[J]. 爆炸与冲击, 2019, 39(5): 146-152. |
Wang Q H, Yuan S, Wei Y M, et al. On factors affecting minimum ignition temperature of corn starch dust cloud based on interactive orthogonal experiment[J]. Explosion and Shock Waves, 2019, 39(5): 146-152. | |
29 | 刘文卿. 实验设计 [M]. 北京: 清华大学出版社, 2005: 71-76. |
Liu W Q. Design of Experiments [M]. Beijing: Tsinghua University Press, 2005: 71-76. | |
30 | 徐浩, 延卫, 汤成莉.水垢的电化学去除工艺与机理研究[J]. 西安交通大学学报, 2009, 43(5): 104-108. |
Xu H, Yan W, Tang C L. Technology and mechanism of water scale removal by electrochemical method[J]. Journal of Xian Jiaotong University, 2009, 43(5): 104-108. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[7] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[8] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[9] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[13] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 575
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||