1 |
周芳, 姜波. 煤制天然气工艺流程优化探讨[J]. 化工设计, 2016, 26(3): 7-10.
|
|
Zhou F, Jiang B. Discussion on coal-to-natural gas process flow optimization[J]. Chemical Engineering Design, 2016, 26(3): 7-10.
|
2 |
Roensch S, Schneider J, Matthischke S, et al. Review on methanation — from fundamentals to current projects[J]. Fuel, 2016, 166: 276-296.
|
3 |
胡大成, 高加俭, 贾春苗, 等. 甲烷化催化剂及反应机理的研究进展[J]. 过程工程学报, 2011, 11(5): 880-893.
|
|
Hu D C, Gao J J, Jia C M, et al. Research advances in methanation catalysts and their catalytic mechanisms[J]. The Chinese Journal of Process Engineering, 2011, 11(5): 880-893.
|
4 |
Bai X B, Wang S, Sun T J, et al. The sintering of Ni/Al2O3 methanation catalyst for substitute natural gas production[J]. Reaction Kinetics Mechanisms and Catalysis, 2014, 112(2): 437-451.
|
5 |
Bartholomew C H. Mechanisms of catalyst deactivation[J]. Applied Catalysis A: General, 2001, 212(1/2): 17-60.
|
6 |
Enger B C, Holmen A. Nickel and Fischer-Tropsch synthesis[J]. Catalysis Reviews-Science and Engineering, 2012, 54(4): 437-488.
|
7 |
Klaigaew K, Samart C, Chaiya C, et al. Effect of preparation methods on activation of cobalt catalyst supported on silica fiber for Fischer-Tropsch synthesis[J]. Chemical Engineering Journal, 2015, 278: 166-173.
|
8 |
Mhadmhan S, Natewong P, Prasongthum N, et al. Investigation of Ni/SiO2 fiber catalysts prepared by different methods on hydrogen production from ethanol steam reforming[J]. Catalysts, 2018, 8(8): 1-18.
|
9 |
Ren J, Li H D, Jin Y Y, et al. Silica/titania composite-supported Ni catalysts for CO methanation: effects of Ti species on the activity, anti-sintering, and anti-coking properties[J]. Applied Catalysis B: Environmental, 2017, 201: 561-572.
|
10 |
Jin G J, Gu F N, Liu Q, et al. Highly stable Ni/SiC catalyst modified by Al2O3 for CO methanation reaction[J]. RSC Advances, 2016, 6(12): 9631-9639.
|
11 |
张加赢, 辛忠, 孟鑫, 等. 基于MCM-41的镍基甲烷化催化剂活性与稳定性[J]. 化工学报, 2014, 65(1): 160-168.
|
|
Zhang J Y, Xin Z, Meng X, et al. Activity and stability of nickel based MCM-41 methanation catalysts for production of synthetic natural gas[J]. CIESC Journal, 2014, 65(1): 160-168.
|
12 |
Tao M, Meng X, Xin Z, et al. Synthesis and characterization of well dispersed nickel-incorporated SBA-15 and its high activity in syngas methanation reaction[J]. Applied Catalysis A: General, 2016, 516: 127-134.
|
13 |
Cheng C B, Shen D K, Xiao R, et al. Methanation of syngas (H2/CO) over the different Ni-based catalysts[J]. Fuel, 2017, 189: 419-427.
|
14 |
Zeng Y, Ma H F, Zhang H T, et al. Highly efficient NiAl2O4-free Ni/γ-Al2O3 catalysts prepared by solution combustion method for CO methanation[J]. Fuel, 2014, 137: 155-163.
|
15 |
Xue J J, Xie J W, Liu W Y, et al. Electrospun nanofibers: new concepts, materials, and applications[J]. Accounts of Chemical Research, 2017, 50(8): 1976-1987.
|
16 |
刘力菲, 李伟, 黄潇楠. 静电纺丝纳米纤维的制备与应用[J]. 首都师范大学学报(自然科学版), 2017, 38(1): 58-63.
|
|
Liu L F, Li W, Huang X N. Preparation and application of the electrospinning nanofibers[J]. Journal of Capital Normal University (Natural Science Edition), 2017, 38(1): 58-63.
|
17 |
Zou R, Wen S P, Zhang L Q, et al. Preparation of Rh-SiO2 fiber catalyst with superior activity and reusability by electrospinning[J]. RSC Advances, 2015, 5(121): 99884-99891.
|
18 |
Li W H, Zhang A F, Jiang X, et al. The anti-sintering catalysts: Fe-Co-Zr polymetallic fibers for CO2 hydrogenation to C2 = -C4 = -rich hydrocarbons[J]. Journal of CO2 Utilization, 2018, 23: 219-225.
|
19 |
Zhao Y Y, Wang H Y, Lu X F, et al. Fabrication of refining mesoporous silica nanofibers via electrospinning[J]. Materials Letters, 2008, 62(1): 143-146.
|
20 |
Wang X Q, Dou L Y, Yang L, et al. Hierarchical structured MnO2@SiO2 nanofibrous membranes with superb flexibility and enhanced catalytic performance[J]. Journal of Hazardous Materials, 2017, 324: 203-212.
|
21 |
辛忠, 何璐铭, 孟鑫. 一种镍基纯硅型分子筛催化剂及其制备方法与应用: 202010147006.7[P]. 2020-03-05.
|
|
Xin Z, He L M, Meng X. A nickel-based pure silicon molecular sieve catalyst and its preparation and application: 202010147006.7[P]. 2020-03-05.
|
22 |
Kang H G, Zhu Y H, Yang X L, et al. A novel catalyst based on electrospun silver-doped silica fibers with ribbon morphology[J]. Journal of Colloid and Interface Science, 2010, 341(2): 303-310.
|
23 |
Fang C, Zhang D S, Shi L Y, et al. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3[J]. Catalysis Science & Technology, 2013, 3(3): 803-811.
|
24 |
Guo X Z, Yang H, Cao M. Nucleation and crystallization behavior of Li2O-Al2O3-SiO2 system glass-ceramic containing little fluorine and no-fluorine[J]. Journal of Non-Crystalline Solids, 2005, 351(24/25/26): 2133-2137.
|
25 |
赵醒, 胡彦杰, 蒋洁超, 等. 过渡金属原位掺杂Pt/TiO2的喷雾燃烧制备及其CO氧化性能[J]. 华东理工大学学报(自然科学版), 2018, 44(6): 823-830.
|
|
Zhao X, Hu Y J, Jiang J C, et al. Transition metal in situ doping Pt/TiO2 by flame spray pyrolysis for CO oxidation[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2018, 44(6): 823-830.
|
26 |
Zhao B R, Chen Z P, Chen Y J, et al. Syngas methanation over Ni/SiO2 catalyst prepared by ammonia-assisted impregnation[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27073-27083.
|
27 |
Gao J J, Wang Y L, Ping Y, et al. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas[J]. RSC Advances, 2012, 2(6): 2358-2368.
|
28 |
Borodko Y, Somorjai G A. Catalytic hydrogenation of carbon oxides — a 10-year perspective[J]. Applied Catalysis A: General, 1999, 186(1/2): 355-362.
|
29 |
Tao M, Xin Z, Meng X, et al. Highly dispersed nickel within mesochannels of SBA-15 for CO methanation with enhanced activity and excellent thermostability[J]. Fuel, 2017, 188: 267-276.
|
30 |
Shinde V M, Madras G. CO methanation toward the production of synthetic natural gas over highly active Ni/TiO2 catalyst[J]. AIChE Journal, 2014, 60(3): 1027-1035.
|
31 |
Liu S S, Jin Y Y, Han Y, et al. Highly stable and coking resistant Ce promoted Ni/SiC catalyst towards high temperature CO methanation[J]. Fuel Processing Technology, 2018, 177: 266-274.
|