化工学报 ›› 2020, Vol. 71 ›› Issue (9): 3866-3875.doi: 10.11949/0438-1157.20200339

• 综述与专论 • 上一篇    下一篇

水凝胶材料在金属离子富集与分离领域的研究进展

文国宇1(),汪伟1,2,谢锐1,2,巨晓洁1,2,刘壮1,2,褚良银1,2()   

  1. 1.四川大学化学工程学院,四川 成都 610065
    2.四川大学高分子材料工程国家重点实验室,四川 成都 610065
  • 收稿日期:2020-03-31 修回日期:2020-05-27 出版日期:2020-09-05 发布日期:2020-09-05
  • 通讯作者: 褚良银 E-mail:737742493@qq.com;chuly@scu.edu.cn
  • 作者简介:文国宇(1995—),男,博士研究生,737742493@qq.com
  • 基金资助:
    国家自然科学基金项目(21991101)

Recent progress of hydrogel materials in the field of enrichment and separation of metal ions

Guoyu WEN1(),Wei WANG1,2,Rui XIE1,2,Xiaojie JU1,2,Zhuang LIU1,2,Liangyin CHU1,2()   

  1. 1.School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
    2.State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2020-03-31 Revised:2020-05-27 Published:2020-09-05 Online:2020-09-05
  • Contact: Liangyin CHU E-mail:737742493@qq.com;chuly@scu.edu.cn

摘要:

水凝胶作为一种极具前景的吸附剂材料,由于具有高效、易操作且能耗低的特性,被广泛应用于工业废水和环境污水中金属离子的富集与分离。近年来,随着主-客体识别作用与金属离子配位作用研究的不断深入,利用水凝胶材料选择性分离和富集金属离子成为研究热点。本文综述了水凝胶材料在富集和分离特定金属离子领域的研究新进展,重点介绍了利用水凝胶材料特异性分离和富集放射性金属离子、稀土金属离子、贵重金属离子和重金属离子的研究现状。

关键词: 水凝胶, 吸附剂, 金属离子富集, 金属离子分离

Abstract:

As a promising adsorbent material, hydrogel has been widely used in the enrichment and separation of metal ions in industrial wastewaters and environmental sewages due to the high efficiency, easy operation and low energy consumption. In recent years, with the deepening of the research on host-guest recognition and metal ion coordination, the use of hydrogel materials to selectively separate and enrich metal ions has become a research hotspot. This paper reviews recent progress in the field of enrichments and separations of specific metal ions. The research status of the separations and enrichments of rare earth elements, precious metal elements and heavy metal elements by hydrogel materials are mainly introduced.

Key words: hydrogels, adsorbents, enrichments of metal ions, separations of metal ions

中图分类号: 

  • TQ 021

图1

Zn2+-PAO超分子水凝胶离子交联与选择性吸附铀的机理[31]"

图2

P(AAc-co-B18C6Am)水凝胶的制备示意图(a)及其识别吸附铯离子的示意图[(b)、(c)][39]"

图3

PNIPAm-clay复合水凝胶制备过程和La3+吸附过程(a)预聚液中的所有成分(SA代表海藻酸钠);(b)PNIPAm-clay纳米复合晶胶的形成(-15℃),自立式晶胶(-15℃)的光学照片以及半互穿网络;(c)吸附后,由于La3+与海藻酸钠高分子链中的G组分的强螯合作用,两种聚合物网络相互交织,半互穿网络转变为互穿聚合物网络[50]"

图4

充分利用多功能MoS2实现从水凝胶的制备到近红外光控制吸附-脱附循环的示意图[62]"

图5

P(NIPAM-co-BCAm)水凝胶针对Pb2+的温敏性吸附/解吸示意图:当温度低于LCST时吸附,当温度高于LCST时解吸[68]"

表1

水凝胶吸附剂对不同金属离子吸附容量及其吸附条件"

吸附剂金属离子最大吸附容量/(mg·g-1)pH
PCNSUO22+451.1184
SUPUO22+9.2×10-38
Zn2+-PAOUO22+11887
β-CD(AN-co-AA)Th4+6922.95
P(AAc-co-B18C6Am)Cs+74.66
alginate-clay-PNIPAmLa3+1825
P(Penta3MP4/PEGDA/HEMA)Au3+45.190.5
MNHAg+40.56
P(NIPAM-co-B18C6Am)Pb2+1425
MoS2-rGOHg2+3403.5
1 Yetisen A K, Butt H, Volpatti L R, et al. Photonic hydrogel sensors [J]. Biotechnology Advances, 2016, 34(3): 250-271.
2 Yin M J, Yao M, Gao S, et al. Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors [J]. Advanced Materials, 2016, 28(7): 1394-1399.
3 Bailey S E, Olin T J, Bricka R M, et al. A review of potentially low-cost sorbents for heavy metals [J]. Water Research, 1999, 33(11): 2469-2479.
4 Hong H, Seo Y B, Kim D Y, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering [J]. Biomaterials, 2020, 232: 119679.
5 Wang J, Zhang F, Tsang W P, et al. Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering [J]. Biomaterials, 2017, 120: 11-21.
6 Roshanbinfar K, Vogt L, Greber B, et al. Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues [J]. Advanced Functional Materials, 2018, 28(42): 1803951.
7 An Y H, Lee J, Son D U, et al. Facilitated transdermal drug delivery using nanocarriers-embedded electroconductive hydrogel coupled with reverse electrodialysis-driven iontophoresis [J]. ACS Nano, 2020, 14(4): 4523-4535.
8 Wei Z, Volkova E, Blatchley M R, et al. Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration [J]. Advanced Drug Delivery Reviews, 2019, 149: 95-106.
9 Zhao X, Liang Y, Huang Y, et al. Physical double‐network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug‐resistant bacterial infection and removable wound dressing [J]. Advanced Functional Materials, 2020, 30(17): 1910748.
10 Wang K, Wang J, Li L, et al. Novel nonreleasing antibacterial hydrogel dressing by a one-pot method [J]. ACS Biomaterials Science & Engineering, 2020, 6(2): 1259-1268.
11 Chen C S, Zeng F, Xiao X, et al. Three-dimensionally printed silk-sericin-based hydrogel scaffold: a promising visualized dressing material for real-time monitoring of wounds [J]. ACS Applied Materials & Interfaces, 2018, 10(40): 33879-33890.
12 Holtz J H, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials [J]. Nature, 1997, 389(6653): 829-832.
13 Li W, Zhao H, Teasdale P R, et al. Synthesis and characterisation of a polyacrylamide-polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd [J]. Reactive and Functional Polymers, 2002, 52(1): 31-41.
14 Zhang Y, Lin S, Qiao J, et al. Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr(Ⅵ) and Cu(Ⅱ) from aqueous solution [J]. Chemical Engineering Journal, 2018, 353: 225-236.
15 Zhou G, Luo J, Liu C, et al. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent [J]. Water Research, 2016, 89: 151-160.
16 Ehlken S, Kirchner G. Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review [J]. Journal of Environmental Radioactivity, 2002, 58(2/3): 97-112.
17 Ewing R C, Weber W J, Lian J. Nuclear waste disposal—pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides [J]. Journal of Applied Physics, 2004, 95(11): 5949-5971.
18 Wang J, Wan Z. Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry [J]. Progress in Nuclear Energy, 2015, 78: 47-55.
19 Shi C, Fernandez-Jimenez A. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements [J]. Journal of Hazardous Materials, 2006, 137(3): 1656-1663.
20 Righi S, Lucialli P, Bruzzi L. Health and environmental impacts of a fertilizer plant (I): Assessment of radioactive pollution [J]. Journal of Environmental Radioactivity, 2005, 82(2): 167-182.
21 Koenig K L, Goans R E, Hatchett R J, et al. Medical treatment of radiological casualties: current concepts [J]. Annals of Emergency Medicine, 2005, 45(6): 643-652.
22 Atsuumi R, Endo Y, Suzuki A, et al. Radioactive substances in tap water [J]. Fukushima Journal of Medical Science, 2014, 60(1): 101-105.
23 Nair R N, Sunny F, Chopra M, et al. Estimation of radioactive leakages into the Pacific Ocean due to Fukushima nuclear accident [J]. Environmental Earth Sciences, 2013, 71(3): 1007-1019.
24 Kersting A B, Efurd D W, Finnegan D L, et al. Migration of plutonium in ground water at the Nevada Test Site [J]. Nature, 1999, 397(6714): 56-59.
25 Yasunari T J, Stohl A, Hayano R S, et al. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19530-19534.
26 Jacobson M Z. Review of solutions to global warming, air pollution, and energy security [J]. Energy & Environmental Science, 2009, 2(2): 148-173.
27 Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Materialia, 2013, 61(3): 735-758.
28 Lindner H, Schneider E. Review of cost estimates for uranium recovery from seawater [J]. Energy Economics, 2015, 49: 9-22.
29 He J, Jin J, Wang Z, et al. Encapsulating nanosilica into polyacrylic acid and chitosan interpenetrating network hydrogel for preconcentration of uranium from aqueous solutions [J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317(3): 1299-1309.
30 Kou S, Yang Z, Sun F. Protein hydrogel microbeads for selective uranium mining from seawater [J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2035-2039.
31 Yan B, Ma C, Gao J, et al. An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater [J]. Advanced Materials, 2020, 32(10): e1906615.
32 Liu P, Qi W, Du Y, et al. Adsorption of thorium(Ⅳ) on magnetic multi-walled carbon nanotubes [J]. Science China Chemistry, 2014, 57(11): 1483-1490.
33 Hu Y, Giret S, Meinusch R, et al. Selective separation and preconcentration of Th(Ⅳ) using organo-functionalized, hierarchically porous silica monoliths [J]. Journal of Materials Chemistry A, 2019, 7(1): 289-302.
34 Allahyari S A, Ahmadi S J, Minuchehr A, et al. Th(Ⅳ) recovery from aqueous waste via hollow fiber renewal liquid membrane (HFRLM) in recycling mode: modelling and experimental validation [J]. RSC Advances, 2017, 7(12): 7413-7423.
35 Duan G, Zhong Q, Bi L, et al. The poly(acrylonitrule-co-acrylic acid)-graft-beta-cyclodextrin hydrogel for thorium(Ⅳ) adsorption [J]. Polymers (Basel), 2017, 9(6): 201.
36 Kosaka K, Asami M, Kobashigawa N, et al. Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake [J]. Water Research, 2012, 46(14): 4397-4404.
37 Zhang N, Chen S, Hu J, et al. Robust and recyclable sodium carboxymethyl cellulose-ammonium phosphomolybdate composites for cesium removal from wastewater [J]. RSC Advances, 2020, 10(11): 6139-6145.
38 Moon S, Jang S W, Kim Y, et al. Prussian blue decorated hydrogel particles for effective removal of cesium ion from aqueous media [J]. Polymer, 2020, 186: 122029.
39 Yu H R, Hu J Q, Liu Z, et al. Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment [J]. Journal of Hazardous Materials, 2017, 323(Pt B): 632-640.
40 Chen Z. Global rare earth resources and scenarios of future rare earth industry [J]. Journal of Rare Earths, 2011, 29(1): 1-6.
41 Eliseeva S V, Bünzli J C G. Rare earths: jewels for functional materials of the future [J]. New Journal of Chemistry, 2011, 35(6): 1165-1176.
42 Rabl S, Haas A, Santi D, et al. Ring opening of cis-decalin on bifunctional Ir/- and Pt/La-X zeolite catalysts [J]. Applied Catalysis A: General, 2011, 400(1/2): 131-141.
43 Diniz V, Volesky B. Biosorption of La, Eu and Yb using Sargassum biomass [J]. Water Research, 2005, 39(1): 239-247.
44 Brioschi L, Steinmann M, Lucot E, et al. Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE [J]. Plant and Soil, 2012, 366(1/2): 143-163.
45 Ming L, Zhang B, Wang C, et al. La-doping and carbon-coating collaboratively enhance the cycling and rate properties of LiFeBO3 for Li-ion battery [J]. Chemical Physics Letters, 2020, 741: 137090.
46 Manikandan A, Manikandan E, Meenatchi B, et al. Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies [J]. Journal of Alloys and Compounds, 2017, 723: 1155-1161.
47 Hammouda S B, Zhao F, Safaei Z, et al. Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO3 (A = La, Ba, Sr and Ce): characterization, kinetics and mechanism study [J]. Applied Catalysis B: Environmental, 2017, 215: 60-73.
48 Rahman M M, Khan S B, Marwani H M, et al. SnO2-TiO2 nanocomposites as new adsorbent for efficient removal of La(Ⅲ) ions from aqueous solutions [J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1964-1974.
49 Zhu B, Wu D, Yang Y, et al. Selective removal of La(Ⅲ) ions using super-paramagnetic nanosorbent coated by saponified sec-octylphenoxy acetic acid [J]. Journal of Chemical & Engineering Data, 2011, 57(2): 553-560.
50 Wu D, Gao Y, Li W, et al. Selective adsorption of La3+ using a tough alginate-clay-poly(n-isopropylacrylamide) hydrogel with hierarchical pores and reversible re-deswelling/swelling cycles [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6732-6743.
51 Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 9-35.
52 Huang X, Wang Y, Liao X, et al. Adsorptive recovery of Au3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica [J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 793-798.
53 Xiong Y, Wan L, Xuan J, et al. Selective recovery of Ag(I) coordination anion from simulate nickel electrolyte using corn stalk based adsorbent modified by ammonia-thiosemicarbazide [J]. Journal of Hazardous Materials, 2016, 301: 277-285.
54 Lee H W, Schmidt M A, Russell R F, et al. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers [J]. Optics Express, 2011, 19(13): 12180-12189.
55 Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts [J]. Science, 2003, 301(5635): 935-938.
56 Varcoe J R, Slade R C, Wright G L, et al. Steady-state DC and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes [J]. Journal of Physical Chemistry B, 2006, 110(42): 21041-21049.
57 Firlak M, Kahraman M V, Yetimoğlu E K. Preparation and characterization of photocured thiol-ene hydrogel: adsorption of Au(Ⅲ) ions from aqueous solutions [J]. Journal of Applied Polymer Science, 2012, 126(1): 322-332.
58 Tedsree K, Li T, Jones S, et al. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst [J]. Nature Nanotechnology, 2011, 6(5): 302-307.
59 Zhao Q, Liu Y, Wang C. Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-corrosion properties [J]. Applied Surface Science, 2005, 252(5): 1620-1627.
60 Mai L, Wang D, Zhang S, et al. Synthesis and bactericidal ability of Ag/TiO2 composite films deposited on titanium plate [J]. Applied Surface Science, 2010, 257(3): 974-978.
61 Zhang B, Wang X, Zhao Y, et al. Highly photosensitive colorimetric immunoassay for tumor marker detection based on Cu2+ doped Ag-AgI nanocomposite [J]. Talanta, 2017, 167: 111-117.
62 Wei G, Wei J, Zhou J, et al. MoS2 nanosheet initiated smart polymeric hydrogel for NIR-driven Ag(I) enrichment [J]. Chemical Engineering Journal, 2020, 382: 123018.
63 Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review [J]. Journal of Environmental Management, 2011, 92(3): 407-418.
64 Kim H N, Ren W X, Kim J S, et al. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions [J]. Chemical Society Reviews, 2012, 41(8): 3210-3244.
65 Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions [J]. Journal of the American Chemical Society, 2000, 122(42): 10466-10467.
66 Abdel-Halim S H, Shehata A M A, El-Shahat M F. Removal of lead ions from industrial waste water by different types of natural materials [J]. Water Research, 2003, 37(7): 1678-1683.
67 Rafatullah M, Sulaiman O, Hashim R, et al. Adsorption of copper (Ⅱ), chromium (Ⅲ), nickel (Ⅱ) and lead (Ⅱ) ions from aqueous solutions by meranti sawdust [J]. Journal of Hazardous Materials, 2009, 170(2/3): 969-977.
68 Ju X J, Zhang S B, Zhou M Y, et al. Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(Ⅱ) ions [J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 114-118.
69 Yan G, Oliver S P. Adsorption of Hg(Ⅱ) from aqueous solution using functionalized hydrogel loaded with hydrous manganese dioxide particles [J]. Water Science & Technology, 2017, 76(3/4): 747-753.
70 Mercier L, Pinnavaia T J. Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg(Ⅱ) uptake [J]. Environmental Science & Technology, 1998, 32(18): 2749-2754.
71 Zhuang Y T, Zhang X, Wang D H, et al. Three-dimensional molybdenum disulfide/graphene hydrogel with tunable heterointerfaces for high selective Hg(Ⅱ) scavenging [J]. Journal of Colloid and Interface Science, 2018, 514: 715-722.
[1] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[2] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
[3] 罗伟莉, 王雯雯, 潘权稳, 葛天舒, 王如竹. 基于活性碳纤维毡复合吸附剂的储热性能[J]. 化工学报, 2021, 72(S1): 554-559.
[4] 冯宇, 张鑫, 张曼, 王建成, 阎智锋, 李甫, 费鹏飞, 卢建军, 米杰. 静电纺丝纤维对煤基气体污染物脱除研究进展[J]. 化工学报, 2021, 72(8): 3933-3945.
[5] 邓超和, 王佳韵, 李金凤, 刘业凤, 王如竹. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409.
[6] 肖弦, 徐文昊, 沈亮, 王远鹏, 卢英华. 氧化石墨烯与剩余活性污泥聚合制备多孔碳材料及其电化学性能[J]. 化工学报, 2021, 72(7): 3869-3879.
[7] 梁苏卓成, 姬国勋, 孙新利, 王波, 张仕通, 代星. 硅杂原子提升冠醚对锂离子络合能力的机理理论研究[J]. 化工学报, 2021, 72(6): 3149-3159.
[8] 王琪, 赵有璟, 刘洋, 王云昊, 王敏, 项顼. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921.
[9] 张瑞, 陆旗玮, 林森, 于建国. 铝系成型锂吸附剂性能测试评价与对比[J]. 化工学报, 2021, 72(6): 3053-3062.
[10] 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772.
[11] 于涛, 王运东, 刘作华, 马建修, 靖宇. 硫化氢深度吸附材料的研究进展[J]. 化工学报, 2021, 72(2): 748-760.
[12] 钮朝阳, 江南, 沈圆辉, 吴统波, 刘冰, 张东辉. 快速变压吸附制氢工艺的模拟与分析[J]. 化工学报, 2021, 72(2): 1036-1046.
[13] 张瑞, 钟静, 林森, 于建国. 盐湖铝系提锂吸附剂成型条件的影响研究[J]. 化工学报, 2021, 72(12): 6291-6297.
[14] 田军鹏, 沈圆辉, 张东辉, 唐忠利. 规整复合吸附剂真空变压吸附分离CH4/N2工艺模拟与分析[J]. 化工学报, 2021, 72(11): 5675-5685.
[15] 李庆斯, 张雷. 血液灌流吸附剂材料的研究进展[J]. 化工学报, 2020, 71(S2): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!