化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1342-1353.DOI: 10.11949/0438-1157.20200377
收稿日期:
2020-04-13
修回日期:
2020-10-03
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
王彦红
作者简介:
王彦红(1983—),男,博士,讲师, 基金资助:
WANG Yanhong1(),LU Yingnan1,LI Sufen2,DONG Ming2
Received:
2020-04-13
Revised:
2020-10-03
Online:
2021-03-05
Published:
2021-03-05
Contact:
WANG Yanhong
摘要:
针对超燃冲压发动机再生冷却热防护问题,开展了顶部加热和底部加热水平圆管内超临界压力正癸烷换热的模拟研究。探究了两种加热模式下的换热特征和换热差别,阐述了通道外表面热通量、质量流速、运行压力及通道热导率对换热的影响机制。实现了周向平均换热的预测。结果表明:两种加热模式下的浮升力作用不同,通道内壁面周向呈现了不同的管壁温度和热通量分布情况。顶部加热时随周向角增大传热恶化逐渐减弱,底部加热时二次流更强,周向始终存在传热恶化问题。高温流体拟膜态热阻是传热恶化的原因。采用高热导率通道、增加运行压力、降低热质比可以缩小周向壁温和热通量差别。提出的关联式能合理预测周向平均换热情况,满足热防护设计的工程应用。
中图分类号:
王彦红, 陆英楠, 李素芬, 东明. 周向非均匀加热水平圆管内超临界正癸烷换热特性[J]. 化工学报, 2021, 72(3): 1342-1353.
WANG Yanhong, LU Yingnan, LI Sufen, DONG Ming. Heat transfer characteristics of supercritical n-decane in horizontal circular tubes with circumferentially non-uniform heating[J]. CIESC Journal, 2021, 72(3): 1342-1353.
网格方案 个数 | Tout/K | uout/(m·s-1) | ||
---|---|---|---|---|
TH | BH | TH | BH | |
2012×800 | 788.46 | 788.44 | 13.94 | 13.93 |
2800×800 | 791.38 | 791.37 | 14.92 | 14.92 |
3586×800 | 791.54 | 791.55 | 15.18 | 15.19 |
2800×400 | 787.27 | 787.25 | 13.06 | 13.05 |
2800×1200 | 791.46 | 791.46 | 15.02 | 15.02 |
表1 网格无关性分析
Table 1 Grid-independence analysis
网格方案 个数 | Tout/K | uout/(m·s-1) | ||
---|---|---|---|---|
TH | BH | TH | BH | |
2012×800 | 788.46 | 788.44 | 13.94 | 13.93 |
2800×800 | 791.38 | 791.37 | 14.92 | 14.92 |
3586×800 | 791.54 | 791.55 | 15.18 | 15.19 |
2800×400 | 787.27 | 787.25 | 13.06 | 13.05 |
2800×1200 | 791.46 | 791.46 | 15.02 | 15.02 |
1 | Li S F, Wang Y N, Dong M, et al. Experimental investigation on flow and heat transfer instabilities of RP-3 aviation kerosene in a vertical miniature tube under supercritical pressures[J]. Applied Thermal Engineering, 2019, 149: 73-84. |
2 | Zan H, Zhou W X, Xiao X F, et al. Recurrence network analysis for uncovering dynamic transition of thermo-acoustic instability of supercritical hydrocarbon fuel flow[J]. Aerospace Science and Technology, 2019, 85: 1-12. |
3 | Zhang C B, Xu G Q, Gao L, et al. Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure[J]. The Journal of Supercritical Fluids, 2012, 72: 90-99. |
4 | Wen J, Huang H R, Fu Y C, et al. Heat transfer performance of aviation kerosene RP-3 flowing in a vertical helical tube at supercritical pressure[J]. Applied Thermal Engineering, 2017, 121: 853-862. |
5 | Fu Y C, Wen J, Tao Z, et al. Experimental research on convective heat transfer of supercritical hydrocarbon fuel flowing through U-turn tubes[J]. Applied Thermal Engineering, 2017, 116: 43-55. |
6 | Liu B, Zhu Y H, Yan J J, et al. Experimental investigation of convection heat transfer of n-decane at supercritical pressures in small vertical tubes[J]. International Journal of Heat and Mass Transfer, 2015, 91: 734-746. |
7 | Wang H, Zhou J, Pan Y, et al. Experimental investigation on the characteristics of thermo-acoustic instability in hydrocarbon fuel at supercritical pressures[J]. Acta Astronautica, 2016, 121: 29-38. |
8 | Deng H W, Zhu K, Xu G Q, et al. Heat transfer characteristics of RP-3 kerosene at supercritical pressure in a vertical circular tube[J]. Journal of Enhanced Heat Transfer, 2012, 19: 409-421. |
9 | Zhang L, Zhang R L, Xiao S D, et al. Experimental investigation on heat transfer correlations of n-decane under supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2013, 64: 393-400. |
10 | Dang G X, Zhong F Q, Zhang Y J, et al. Numerical study of heat transfer deterioration of turbulent supercritical kerosene flow in heated circular tube[J]. International Journal of Heat and Mass Transfer, 2015, 85: 1003-1011. |
11 | Hua Y X, Wang Y Z, Meng H. A numerical study of supercritical forced convective heat transfer of n-heptane inside a horizontal miniature tube[J]. The Journal of Supercritical Fluids, 2010, 52(1): 36-46. |
12 | Huang D, Ruan B, Wu X Y, et al. Experimental study on heat transfer of aviation kerosene in a vertical upward tube at supercritical pressures[J]. Chinese Journal of Chemical Engineering, 2015, 23: 425-434. |
13 | Huang D, Li W. Heat transfer deterioration of aviation kerosene flowing in mini tubes at supercritical pressures [J]. International Journal of Heat and Mass Transfer, 2017, 111: 266-278. |
14 | 李良伟, 王畅, 朱剑琴, 等. 多影响因素作用下碳氢燃料跨临界过程换热恶化的数值研究[J]. 航空动力学报, 2019, 34(2): 387-395. |
Li L W, Wang C, Zhu J Q, et al. Numerical study on heat transfer deterioration of hydrocarbon fuel in transcritical process under influence of multiple influencing factors[J]. Journal of Aerospace Power, 2019, 34(2): 387-395. | |
15 | Pu H, Li S F, Jiao S, et al. Numerical investigation on convective heat transfer to aviation kerosene flowing in vertical tubes at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2018, 118: 857-871. |
16 | Zhu J Q, Tao Z, Deng H W, et al. Numerical investigation of heat transfer characteristics and flow resistance of kerosene RP-3 under supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2015, 91: 330-341. |
17 | Chen Y Q, Li Y, Sunden B, et al. The abnormal heat transfer behavior of supercritical n-decane flowing in a horizontal tube under regenerative cooling for scramjet engines[J]. Applied Thermal Engineering, 2020, 167: 114637. |
18 | Cheng Z Y, Tao Z, Zhu J Q, et al. Diameter effect on the heat transfer of supercritical hydrocarbon fuel in horizontal tubes under turbulent conditions[J]. Applied Thermal Engineering, 2018, 134: 39-53. |
19 | Xu K K, Tang L J, Meng H. Numerical study of supercritical-pressure fluid flows and heat transfer of methane in ribbed cooling tubes[J]. International Journal of Heat and Mass Transfer, 2015, 84: 346-358. |
20 | 黄世璋, 阮波, 高效伟. 超临界压力低温甲烷波纹管内强化换热数值研究[J]. 航空学报, 2017, 38(5): 17-30. |
Huang S Z, Ruan B, Gao X W. Numerical investigation of heat transfer enhancement of cryogenic-propellant methane in corrugated tubes at supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 17-30. | |
21 | Sun X, Xu K K, Meng H, et al. Buoyancy effects on supercritical-pressure conjugate heat transfer of aviation kerosene in horizontal tubes[J]. The Journal of Supercritical Fluids, 2018, 139: 105-113. |
22 | Hu J Y, Zhou J, Wang N, et al. Numerical study of buoyancy's effect on flow and heat transfer of kerosene in a tiny horizontal square tube at supercritical pressure[J]. Applied Thermal Engineering, 2018, 141: 1070-1079. |
23 | Sun X, Meng H, Zheng Y. Asymmetric heating and buoyancy effects on heat transfer of hydrocarbon fuel in a horizontal square channel at supercritical pressures[J]. Aerospace Science and Technology, 2019, 93: 105358. |
24 | Gao Z G, Bai J H. Numerical analysis on nonuniform heat transfer of supercritical pressure water in horizontal circular tube[J]. Applied Thermal Engineering, 2017, 120: 10-18. |
25 | Bai J H, Pan J, Wu G, et al. Numerical investigation on the heat transfer of supercritical water in non-uniform heating tube[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1320-1332. |
26 | Wang X C, Xiang M J, Huo H J, et al. Numerical study on nonuniform heat transfer of supercritical pressure carbon dioxide during cooling in horizontal circular tube[J]. Applied Thermal Engineering, 2018, 141: 775-787. |
27 | Wang Y H, Li S F, Dong M. Numerical study on heat transfer deterioration of supercritical n-decane in horizontal circular tubes[J]. Energies, 2014, 7(11): 7535-7554. |
28 | Wen J, Huang H R, Jia Z X, et al. Buoyancy effects on heat transfer to supercritical pressure hydrocarbon fuel in a horizontal miniature tube[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1173-1181. |
29 | Song K W, Hu W L, Liu S, et al. Quantitative relationship between secondary flow intensity and heat transfer intensity in flat-tube-and-fin air heat exchanger with vortex generators[J]. Applied Thermal Engineering, 2016, 103(25): 1064-1070. |
30 | Wang L L, Chen Z J, Meng H. Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures[J]. Applied Thermal Engineering, 2013, 54(1): 237-246. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||